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Appendix A: Semi-analytical Model for Resonator-enhanced Distributed Bragg Reflector

We introduce a semi-analytical method to calculate the transmittance and reflectance characteristics of a resonator-
enhanced distributed Bragg reflector (RE-DBR). This method is computationally efficient and aids in optimizing
design parameters for enhanced laser performance.

Consider a RE-DBR as shown in Fig. S1. The setup involves a microring resonator that is evanescently coupled
to a bus waveguide, with a periodic array of grating posts arranged around part of the ring. Assuming both the bus
waveguide and the ring resonator support a single transverse mode, the local optical field can be described using the
complex amplitude of this mode. The relevant optical field amplitudes are defined in Fig. S1. The transmittance and
reflectance of the resonator are given by T = |t|2 = |B1/A1|2 and R = |r|2 = |A2/A1|2. Our objective is to express t
and r in terms of propagation constants, coupling strengths, and waveguide losses.Supp Figure 1: coupled mode theory
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Figure S1: Schematic diagram of the RE-DBR. A Bragg grating partially covers a ring resonator, which is evanes-
cently coupled to a bus waveguide.

1. Directional waveguide coupler

The coupling between the ring resonator and the bus waveguide is described by coupled mode theory [1]. According
to this theory, the evolution of the optical field at the coupler depends on the waveguide coupling strength κc and the
propagation constant mismatch δ = (β2−β1)/2, where β1 and β2 are the propagation constants for the bus waveguide
and the ring resonator, respectively. Specifically, the input and output amplitudes of the ring resonator are related
by the following equations:

A2 = τ1B2 + τ2D2

B1 = τ1A1 + τ2C1

C2 = −τ∗2B2 + τ∗1D2

D1 = −τ∗2A1 + τ∗1C1,

(S1)

where the self-coupling coefficient τ1 = [cos(qlc) + j δ
q sin(qlc))]e

−jδlc , the cross-coupling coefficient τ2 =

−j κc

q sin(qlc)e
−jδlc , and the effective coupling strength q =

√
κ2
c + δ2. These coupling coefficients can be deter-

mined through numerical simulations [2]. Since the role of propagation constant mismatch δ is considered, these
equations apply to both symmetric and asymmetric couplers.

2. Bragg grating

The coupled mode theory for a Bragg grating is well established by modeling it as a one-dimensional periodic
distribution of waveguide effective index [1, 3]. Assuming a grating period Λ, grating length lg, coupling coefficient
κg, and Bragg order N . We consider the grating to be lossless and mirror-symmetric. The amplitude transmission
and reflection coefficients of the grating in terms of amplitude are:

tg =
ρg

ρg cos(ρglg) + jϕ sin(ρglg)
exp(jϕlg)

rg = − jκg sin(ρglg)

ρg cos(ρglg) + jϕ sin(ρglg)
,

(S2)
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where ϕ = β2 −Nπ/Λ and ρg =
√
ϕ2 − κ2

g. The corresponding intensity transmission and reflection are given by

|tg|2 and |rg|2. We proceed to derive the scattering matrix of the grating. Additional phase terms need to be added
to tg and rg when formulating the scattering matrix. A detailed explanation is provided in the following paragraphs.
By definition, the grating scattering matrix S is a 2-by-2 matrix that satisfies

F2 = S11F1 + S12E2

E1 = S21F1 + S22E2.
(S3)

The values of the scattering matrix elements are restricted by the lossless condition, reciprocity, and mirror sym-
metry. These restrictions dictate that [4–6]

S†S = I

S12 = S21

S11 = S22.

(S4)

Moreover, since |tg| and |rg| represent the magnitudes of transmission and reflection coefficients, we have |S11| =
|S22| = |rg| and |S12| = |S21| = |tg|. Combining these equations, it can be shown that the scattering matrix must
have the following form:

S11 = S22 = −j|rg|e−jφ

S12 = S21 = |tg|e−jφ,
(S5)

where φ ≈ β2lg corresponds to the phase difference in the optical field across the grating. The corresponding optical
fields at the grating input and output ports are:

F2 = S11F1 + S12E2 = −j|rg|e−jφF1 + |tg|e−jφE2

E1 = S21F1 + S22E2 = |tg|e−jφF1 − j|rg|e−jφE2.
(S6)

Eq. S6 establishes the input-output relation for the Bragg grating.
Before concluding this section, we briefly introduce how to calculate the grating coupling coefficient κg. This

coefficient can be derived from the longitudinal distribution of effective index neff(z). When the effective index profile
is a square wave with a duty cycle of 1/2, namely

neff(z) =


neff1 0 < z <

Λ

2

neff2
Λ

2
< z < Λ

(S7)

the corresponding grating coupling coefficient can be expressed as [7, 8]

κg =
π

Λ

∆neff

n̄eff

sin(Nπ/2)

Nπ
, (S8)

where ∆neff = neff2 − neff1 and n̄eff = (neff1 + neff2)/2. Once the maximum and minimum effective indices over the
grating are numerically simulated, then κg can be determined using Eq. S8.

3. Microring resonator

In the RE-DBR structure, the grating partially covers the ring resonator, and there are ring sections free of grating.
Here we establish input-output relations for these grating-free ring sections. Since we have modeled the grating as
a lossless component, the grating-free section of the ring resonator should account for all the optical loss within the
ring for consistency of round-trip loss. The round-trip amplitude attenuation coefficient is α = exp(−ρlr/2) with ρ
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being the optical loss and lr the ring circumference. Moreover, the phase shift across the grating-free section of the
ring resonator is θ = β2(lr − lg). To simplify the derivation, we assume the two ends of the grating are at the same
distance from the resonator coupler. Our final results Eqs. S10 and S11 apply to general cases and do not depend on
this assumption The optical fields in the grating-free sections of the ring resonator are then described by the following
equations [1]:

E2 = C2

√
α exp(−jθ

2
) = C2 exp[−

ρlr
4

− jβ2(lr − lg)

2
]

C1 = E1

√
α exp(−jθ

2
) = E1 exp[−

ρlr
4

− jβ2(lr − lg)

2
]

D2 = F2

√
α exp(−jθ

2
) = F2 exp[−

ρlr
4

− jβ2(lr − lg)

2
]

F1 = D1

√
α exp(−jθ

2
) = D1 exp[−

ρlr
4

− jβ2(lr − lg)

2
].

(S9)

4. Resonator-enhanced distributed Bragg reflector

Combining Eq. S1, Eq. S6, Eq. S9, and the implicit condition that B2 = 0 (no light comes from the output port),
we derive the expressions for the amplitude transmission and reflection coefficients for the RE-DBR:

t = τ1 + τ2τ
∗
2 t0

τ∗1 t0 − |tg|
1− 2τ∗1 |tg|t0 + (τ∗1 )

2t20

r = j
τ2τ

∗
2 |rg|t0

1− 2τ∗1 |tg|t0 + (τ∗1 )
2t20

,

(S10)

where t0 = exp(−ρlr/2− jβ2lr) is the roundtrip transmission coefficient for the ring resonator.
Eq. S10 provides an efficient method for calculating the transmittance and reflectance spectra of a RE-DBR. This

approach eliminates the need for resource-intensive, full three-dimensional numerical simulations. Instead, it requires
simulating the waveguide propagation constants and coupling strengths for the specific modes and wavelengths of
interest. These simulated values can then be substituted into the equation to determine the transmission and reflection
coefficients, which in turn yield the transmittance and reflectance spectra of the RE-DBR.

It is worth mentioning that a simplified version of Eq. S10 was proposed in [4], which applies when the ring resonator
and the bus waveguide have their propagation constant matched. The formulation presented here is more general and
is necessary to model RE-DBR with asymmetric directional coupler, as is the case in our experimental demonstration
discussed in the text.

The effective cavity length of the RE-DBR is given by Leff = c
2ng

∂ϕ
∂ω , where ϕ is the phase of the amplitude

reflection coefficient r = |r|e−jϕ, and ng is the group index of the ring. Specifically, at the wavelength of maximum

reflection, ∂|r|
∂ω = 0, it follows that ∂r

∂ω = −j
2ngr
c Leff . By differentiating Eq. S10 with respect to frequency, we obtain

an expression for the effective cavity length at the wavelength of maximum reflection:

Leff =
1− (τ∗1 t0)

2

2[1− 2τ∗1 |tg|t0 + (τ∗1 t0)
2]
lr. (S11)
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