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Introduction

In this note, we introduce how to numerically calculate the passive characteristics of a Bragg grating with
a spatially varying period. Such a grating is usually referred to as a chirped grating and is known for its
applications in dense wavelength division multiplexing (DWDM) communications and dispersion compensation
for pulsed lasers. In particular, we will use the transfer matrix method to calculate the reflectance spectra and
group delay of a linearly chirped single-mode grating. The notations used in this note follow the convention
of [1]. The MATLAB script for the calculation is available via this link, which can reproduce the simulation
results reported in [2] (Fig. 4(a)).

This note is organized as follows: First, we will briefly introduce the coupled mode theory for a no-chirp Bragg
grating. Next, we will calculate the transfer matrix, reflection spectra, and group delay of a linearly chirped
grating using the transfer matrix method. Finally, we will present the results of numerical experiments that
reproduce figures from the literature.

Coupled Mode Theory for Bragg Grating

Consider a Bragg grating with the effective index distribution neff(z) = n0 +δneff(z), where δneff(z) represents
a perturbation to the uniform background effective index n0 and is a periodic function of the longitudinal
position z. Specifically, we assume the periodic perturbation to the effective index has the following form:

δneff(z) = ¯δneff [1 + v cos(2π

Λ z)], (1)

where ¯δneff is the effective index perturbation averaged over periods (it is a constant in the context of this
note), v represents the magnitude of effective index fluctuations, and Λ corresponds to the oscillation period.

The optical field evolution across the grating can be described by the coupled mode theory in an accurate
and simply manner. It can be shown that, with a specific selection of reference system and under proper
approximations, the amplitudes of the forward and backward light R(z) and S(z) satisfy a group of differential
equations [1]:

dR

dz
= iσ̂R(z) + iκS(z)

dS

dz
= −iσ̂S(z) − iκ∗R(z). (2)

The self-coupling coefficient σ̂ = δ + σ is defined by:

δ = 2πn0( 1
λ

− 1
λD

)

σ = 2π

λ
¯δneff , (3)

1

https://1drv.ms/f/c/5c6f2430cdc8a807/Eo16-EG3NStCtG0l-hZTL0kBuN85e2z50Is03Yg-xotiJA?e=LMlZgb


where λD = 2n0Λ is the designed wavelength for Bragg scattering for an infinitesimal perturbation to effective
index, i.e., δneff → 0. The cross-coupling coefficient κ is defined by:

κ = κ∗ = π

λ
v ¯δneff . (4)

Solving Eq. 2, we obtain the following relation that links optical field amplitudes at the grating input
R(0), S(0) and those at the grating output R(L), S(L):

(
R(L)
S(L)

)
=
(

cosh(γBL) − i σ̂
γB

sinh(γBL) −i κ
γB

sinh(γBL)
i κ

γB
sinh(γBL) cosh(γBL) + i σ̂

γB
sinh(γBL)

)(
R(0)
S(0)

)
, (5)

where γB =
√

κ2 − σ̂2 and L is the length of the grating. The 2-by-2 matrix in Eq. 5, denoted by F , is the
transfer matrix for the Bragg grating. The transfer matrix provides a complete description of the transmission
and reflection characteristics of the grating and therefore concludes this section.

Transfer Matrix Method for Chirped Grating

So far, we have been discussing a Bragg grating where the effective index distribution is a rigorously periodic
function, that is, the period at different positions is identical. In this section, we will focus on a Bragg grating
where the period of index profile changes slowly and linearly over space. In this context, the effective index
period is a linear function of the longitudinal position: Λ(z) = Λ0 + Cz, where C is the chirp coefficient. We
assume the longitudinal coordinate of the grating ranges from −L/2 to L/2, such that Λ0 corresponds to
the effective index period in the middle of the grating. The corresponding effective index distribution of the
chirped grating is

δneff(z) = ¯δneff{1 + v cos[ 2π

Λ0
z + ϕ(z)]}, (6)

where ϕ(z) represents the phase shift of the effective index profile due to the chirp. By definition, ϕ(z)
satisfies the following condition:

dϕ

dz
= 2π

Λ(z) − 2π

Λ0
. (7)

To numerically calculate the transmission and reflection spectra of this chirped grating, we will employ
the transfer matrix method. This involves segmenting the chirped grating into multiple sections and
approximating each section as a no-chirp grating. By calculating the transfer matrix for these grating
segments and multiplying them in a series, one can derive the total transfer matrix of the chirped grating.
Below, we present a detailed mathematical formulation of this method.

Let’s segment a linearly chirped grating into N segments. For the i-th segment, by recalling Eq. 3, the
self-coupling coefficient σ̂i = δi + σ should follow the same form. That is,
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δi = 2πn0( 1
λ

− 1
2n0Λ(zi)

)

= 2πn0( 1
λ

− 1
2n0Λ0

) + 2πn0( 1
2n0Λ0

− 1
2n0Λ(zi)

)

= 2πn0( 1
λ

− 1
λD(0)) + 2πn0( 1

λD(0) − 1
λD(zi)

)

= 2πn0( 1
λ

− 1
λD(0)) + 2πn0

λD(0)2
dλD

dz
zi, (8)

where zi is the longitudinal position at the middle of the i-th grating segment and λD(z) = 2n0Λ(z) is the
designed wavelength for Bragg grating around the longitudinal position z.

The expression of σ is the same as in the case of a no-chirp grating and takes the same value for all grating
segments:

σ = 2π

λ
¯δneff . (9)

Similarly, we can derive the expression of the cross-coupling coefficient κ by recalling Eq. 4,

κ = κ∗ = π

λ
v ¯δneff . (10)

Note that κ takes the same value over all grating segments, so we do not need the subscript i for it. Let’s
denote γB,i =

√
κ2 − σ̂2

i , the input-output relation for the i-th segment of the chirped grating follows:

(
R(zi + Li/2)
S(zi + Li/2)

)
=
(

cosh(γB,iLi) − i σ̂i

γB,i
sinh(γB,iLi) −i κ

γB,i
sinh(γB,iLi)

i κ
γB,i

sinh(γB,iLi) cosh(γB,iLi) + i σ̂i

γB,i
sinh(γB,iLi)

)(
R(zi − Li/2)
S(zi − Li/2)

)
,

(11)

where Li is the length of the i-th grating segment, which satisfies
∑N

i=1 Li = L. We denote the 2-by-2 transfer
matrix in Eq. 11 as Ti. The transfer matrix of the entire chirped grating T can be calculated by multipying
the transfer matrix for each grating segment {Ti}:

T = TN × TN−1 × ... × T1 = ΠN
i=1Ti. (12)

After obtaining the transfer matrix, the reflectivity R of the chirped grating and the group delay τ of the
reflected light can be as follows:

r = −T21

T22

R = |r|2

τ = −d arg(r)
dω

, (13)

where ω = 2πf is the angular frequency.
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Numerical Experiments

Based on the theory described above, we developed a MATLAB code to numerically calculate the reflectivity
and group delay for a linearly chirped grating. To demonstrate the correctness of our code, we use it to
reproduce Fig. 4(a) in [2]. The parameters used in the calculation are listed below, and our results are
consistent with those reported in the literature.

• Length of grating = 13.8 cm
• Grating period at the end: 528.14 nm
• Unperturbed effective index of the grating: 1.467
• Grating fringe visibility: 1
• Chirp coefficient: −2.46 × 10−8 m−1

• Number of grating segments: 500
• Amplitude of effective index: 1 × 10−5

Figure 1: Simulated reflection spectrum and group delay of a linearly chirped grating.
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