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1. Introduction

In this note, we present a detailed derivation of the modified coupled-mode equation for higher-order
gratings. Using this equation, we demonstrate the existence of bound states in the continuum for second-

order mirror-symmetric gratings.
2. Modified coupled mode equations

Following Ref. [1], we derive the modified coupled-mode equations for higher-order waveguide Bragg

gratings. A quasi-TE mode in a waveguide grating of order N is governed by the Helmholtz equation:
V2E (x,y,2) + kin*(x,y,2)E,(x,y,2) = 0, (@)

where n(x,y,z) is the refractive-index profile, and k, = 2m/A is the vacuum wavenumber with A
being the wavelength in vacuum.
Since n?(x,y,z) isperiodicin z for a waveguide grating extending along the z-axis, we may express

it as a Fourier expansion:

2
n(x,7,2) = mE () + ) Agm ) e (i), @

q+0

where A is the grating period, and nZ(x,y) represents the relative permittivity profile averaged over
one grating period.

Combining Egs. 1 and 2, we obtain

2nqz
V2E, + k3n3E, + kZE, Z Ag exp (j Aq ) =0, 3)

q+0

where the summation index q = +1,+2, ....
According to Bloch’s theorem, the electric field of an eigenmode in a periodic medium can be expressed

as an infinite series:
Eoy ) = ) B (y,2) exp(ifna), @)
m=—oo

2mm

where B, = o + 0 Bo = Nmr/A is the Bragg frequency, E,Em) (x,v,2) represents the m-th order

partial wave (m = 0, £1, £2, ...), which satisfies:

E{™ (x,y,2) = ES9 (x,y) exp(jéz), )



__ 2Tmneff

where 6 = — fy = a Bo is the detuning of the propagation constant from the Bragg frequency.

Substituting Eq. 4 into Eq. 3 gives:

VY By 2) ep(inn) +Igng Y BT (x,y,2) exp(jn2)
m=—oo m=—o
AN (m) - 2nq
+ k¢ Z Z AqE, " (x,y,z) exp [] (,Bm + T) Z] = 0.
m=—oo q#0

For this equation to hold, the coefficient of each Fourier component must vanish.

Noting that all partial waves E ,Sm) share the same oscillation frequency with respect to z (see Eq. 5),
we obtain:

3] -
V2ES™ (3, ,2) + 2] = B + (G = BRIES™ (5,3, 2) + 18 ) AES(,y,2) = 0. (6)

q+0

This equation holds for all partial-wave orders m = 0,+1,+2, ....

In particular, when m = 0 and the grating is weak (|Aq| « 1), Eq. 6 is approximately equivalent to the
Helmholtz equation for the forward-propagating mode of a waveguide in the absence of a grating.
Similarly, when m = —N (for simplicity, denoted as p = —N), Eq. 6 can be interpreted as the equation

governing the backward-propagating mode in the waveguide.

Therefore, we may write:

EP(x,y,2) = R@Ey(x,y), EP (x,y,2) = S(2)Eo(x,y), %

where E, is the mode profile E, of the unperturbed waveguide, while R(z) and S(z) are slowly

varying functions of z representing the amplitudes of forward and backward waves, respectively.

Substituting Eq. 7 into Eq. 6 for m = 0,p yields:

d
VR()E (x, )] + 21BoFox, Y) - R(2) + (kinE — BOR(IEy(x, ) + k3 ) AgES(x,9,2) = 0,(8.1)
q+0

d
V2[S(2)Eo(x, y)] + 2jByEo(x,¥) ES(z) + (k3n3 — B2)S(2)Eo(x,y) + k3 Z AqE,EP‘q) (x,y,2) = 0.(8.2)
q+0

Note that E| satisfies the Helmholtz equation for a waveguide without a grating:

2 62
@Eo +a—yon + (k§n§ — BHE, =0, (C)]

where 8 = f, + & is the propagation constant.



Combining Eqgs. 8 & 9 and using 8, = —f,, we obtain:

da? d _
By R+ 2jBoFo R+ (87 = BOREe + kG ) AgES” =0, (10.1)
q#0
dt i d 2 2 2 (r-a)
Ey @5 = 2jBoEy ES +(B* — B5)SEy + kg Z AJEy Y = 0. (10.2)
q#0

When considering modes near the Bragg frequency, R(z) and S(z) are slowly varying functions of z.

Hence, the terms proportional to d?R/dz? and d?S/dz? can be neglected, resulting in:

dR _
2jBo——Eo + (B2 — BHREy + kZA_,SE, + k3 Z AES? =0, (11.1)
q+0,—p
ds _
~2jo—Eo + (B — B§)SEo + k§A,RE, + K} Z AEP ™ = 0. (11.2)
q#0,p

Multiplying both sides of Eq. 11 by Ej and integrating over the waveguide cross-section yields:

dR k§ -
- — jOR — jKS — 2][3 OP Z quE(;E,(C Dixdy = 0, (12.1)
0% gz0-p
s jk3 2 (p-0)
I8 iR~ 55 Z AEEP P dxdy =0, (12.2)
q#0,p

where we have used the approximation % — B2 ~ 2,6. The parameters P, Kp, Kp are defined as:

P= flEolzdxdy, (13.1)
kd
Kp = WJ. Ap|E0|2dxdy, (132)
k? X
K_p = mfA_plEolzdxdy = K. (13.3)

Note that P represents the integrated optical intensity, not the optical power.

To solve Eq. 12, we need to evaluate the partial waves E,Em) of different orders (m # 0, p) using Eq. 6.
To simplify the formulation, we neglect the JF. ,Sm) /0z term and assume that E,EO), E,Ep) dominate the
series expansion. These approximations are valid when the detuning from the Bragg frequency is small

and the grating is weak. Under these assumptions, and combining Egs. 6 & 7, we have:

VZE(™ + (kZng — BZ)E™ = —KZEo(AmR + Ap_pS),m # 0,p. (14)



The solution to this equation takes the form:

E{™ = REY + SEY, (15)
where ES and E® satisfy:
V2ED + (k2n2 — B2)EY = —kZA,_iEpym # 0,p;i = 0,p. (16)

Substituting Eq. 15 into Eq. 12 yields the modified coupled-mode equations for the higher-order

grating:
dR
=, I+ R = (5 + &S, (17.1)
s .
— 2, 1+ 8S =, + G)R, (17.2)

where {;_, are Streifer terms (first introduced by William Strifer in [2]) defined as:

§ (0)
AEE dd,
G = 2/)’0P J 0 xaey

q#0,~p

k§ « = (D)
(2 = Zﬁop Z quEOE—q dxdy,

q+0,—p

(p)
A E;ED dxdy,
= ZﬁOPZf 05p—q XCY

q#0,p

©
A ESED, dxd
= ZﬁOPZf 05p—q XY

q#0,p

®

Here, the terms Ej,’ are obtained by solving Eq. 16. The definitions of P and k, are given in Eq. 13.

3. Dispersion relation for symmetric waveguide grating

In all cases, {; = (3; when the grating is mirror-symmetric, that is, when n2(x,y,z) is an even
function of z, we also have {, = {,. Below, we restrict our discussion to this specific case. In this
case, both A, and K, are real. Combining Eqgs. 17.1 and 17.2, we obtain:

dZ
(6+(1)2—(Kp+(2)2+ﬁ R =0.

Aw

d? .
To solve for the mode eigenfrequency in the grating, we use substitutions § — — 5 —k?, which
g

yield:



A
vw -4+ /(;cp + (2) + k2, (18)

g

where Aw is the eigenfrequency detuning from ;ﬂ, vy is the group velocity of the waveguide (in the
eff

absence of the grating), k = f — 5, is the Bragg wave-vector detuning from the Bragg frequency f,.

4. Bound state in the continuum

Moreover, when the grating is 2"-order and mirror-symmetric, it can be shown that the imaginary parts
of {;,({, are equal [3] (a proof is provided below). Therefore, for the two branches of eigenmodes
described by Eq. 18, one branch exhibits zero radiation loss (recalling that k,, isreal)at k = 0, while
the other exhibits enhanced radiation loss. The eigenmode with suppressed radiation loss is known as a

bound state in the continuum (BIC).

Existence theorem for BIC
For a 2"-order mirror-symmetric grating (p = —2, n?(x,y, —z) = n%(x,y, z)), there exists an

eigenmode at the Bragg frequency with zero radiation loss.
Proof

To prove the existence of a BIC in a 2"%-order mirror-symmetric grating, it suffices to show that
Im(¢;) = Im(J3). The existence of the BIC then follows from Eq. 18 (noting again that r,, is real).

When no grating is present, the waveguide is lossless, and E,, can be chosen to be real through an

appropriate choice of phase reference [4].

As stated previously, {;,(, are given by:

kZ
61=2ﬂzp Z f ALEGEQ dxdy, (19.1)
a#0,~p
k§ (D)
= 2BoP Z AGEGEZ] dxdy, (19.2)
a#0,-p

where E,(,? is determined from Eq. 16:
V2ED + (k2n2 — B2)EY) = —kZA,_iEpym # 0,p;i = 0,p. (20)

Eq. 20 is an inhomogeneous Helmholtz equation of the form V2A + k24 = —f with k2, = kZn3 —
B2 and f = k3A,,_;E,. Assuming the spatial variation of the refractive index is weak such that

k3n2 ~ kin2g, we obtain:

K = ki 5 = B+ 0 — o+ 22) = (Bao) - (B0 2M) oy



where the grating order N = 2, the detuning § is assumed to be small, and m is an integer
representing the partial-wave order. For a 2"-order grating, k2, < 0 only when m = —1, otherwise
k% > 0.

Recalling that the solution to Eq. 20 can be expressed as an integral over the Green’s function [5]:

BY = [ KA B Gn (22.1)

exp(jkm|r —1'])

G (r,7) = Anlr —r'|

(22.2)

where both 7 and 7’ are two-dimensional position vectors: r = (x,y), ' = (x',y").

Combining Eqgs. 21 and 22, and recalling that E; is real (due to lossless waveguide) and that A,,_; is

real for a mirror-symmetric grating, we find that:

When m = —1, k,, isanimaginary number, E,(,? possesses a nonzero imaginary part.
Otherwise E,(,? is a real-valued field.

From this observation and Eq. 19, the imaginary parts of {;,{, reduce to:

m(g,) = 5= Im [ f A EOE(O)dxdy], 23.1)

m(g;) = 5= Im [ f A EOE(;Z)dxdy]. 23.2)

Since A; = A_, for a mirror-symmetric grating, it follows from Eq. 22 that E~ (0) =E" 2) . Therefore,
we conclude that:

Im({y) = Im({y). (24)
This relationship proves the existence of a bound state in the continuum (BIC).

Q.E.D.
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