Coupled Wave Theory for Higher-Order Gratings

Yu Di Oct 8, 2025

1. Introduction

In this note, we present a detailed derivation of the modified coupled-mode equation for higher-order gratings. Using this equation, we demonstrate the existence of bound states in the continuum for second-order mirror-symmetric gratings.

2. Modified coupled mode equations

Following Ref. [1], we derive the modified coupled-mode equations for higher-order waveguide Bragg gratings. A quasi-TE mode in a waveguide grating of order N is governed by the Helmholtz equation:

$$\nabla^2 E_x(x, y, z) + k_0^2 n^2(x, y, z) E_x(x, y, z) = 0, \tag{1}$$

where n(x, y, z) is the refractive-index profile, and $k_0 = 2\pi/\lambda$ is the vacuum wavenumber with λ being the wavelength in vacuum.

Since $n^2(x, y, z)$ is periodic in z for a waveguide grating extending along the z-axis, we may express it as a Fourier expansion:

$$n^{2}(x, y, z) = n_{0}^{2}(x, y) + \sum_{q \neq 0} A_{q}(x, y) \exp\left(j\frac{2\pi qz}{\Lambda}\right),$$
 (2)

where Λ is the grating period, and $n_0^2(x, y)$ represents the relative permittivity profile averaged over one grating period.

Combining Eqs. 1 and 2, we obtain

$$\nabla^{2} E_{x} + k_{0}^{2} n_{0}^{2} E_{x} + k_{0}^{2} E_{x} \sum_{q \neq 0} A_{q} \exp\left(j \frac{2\pi qz}{\Lambda}\right) = 0, \tag{3}$$

where the summation index $q = \pm 1, \pm 2, ...$

According to Bloch's theorem, the electric field of an eigenmode in a periodic medium can be expressed as an infinite series:

$$E_x(x, y, z) = \sum_{m=-\infty}^{\infty} E_x^{(m)}(x, y, z) \exp(j\beta_m z),$$
 (4)

where $\beta_m = \beta_0 + \frac{2\pi m}{\Lambda}$, $\beta_0 = N\pi/\Lambda$ is the Bragg frequency, $E_x^{(m)}(x, y, z)$ represents the *m*-th order partial wave $(m = 0, \pm 1, \pm 2, ...)$, which satisfies:

$$E_x^{(m)}(x, y, z) = E_{x,0}^{(m)}(x, y) \exp(j\delta z), \qquad (5)$$

where $\delta = \beta - \beta_0 = \frac{2\pi n_{\rm eff}}{\lambda} - \beta_0$ is the detuning of the propagation constant from the Bragg frequency. Substituting Eq. 4 into Eq. 3 gives:

$$\nabla^{2} \sum_{m=-\infty}^{\infty} E_{x}^{(m)}(x, y, z) \exp(j\beta_{m}z) + k_{0}^{2} n_{0}^{2} \sum_{m=-\infty}^{\infty} E_{x}^{(m)}(x, y, z) \exp(j\beta_{m}z)$$

$$+k_0^2 \sum_{m=-\infty}^{\infty} \sum_{q\neq 0} A_q E_x^{(m)}(x, y, z) \exp\left[j\left(\beta_m + \frac{2\pi q}{\Lambda}\right)z\right] = 0.$$

For this equation to hold, the coefficient of each Fourier component must vanish.

Noting that all partial waves $E_x^{(m)}$ share the same oscillation frequency with respect to z (see Eq. 5), we obtain:

$$\nabla^2 E_x^{(m)}(x, y, z) + 2j\beta_m \frac{\partial}{\partial z} E_x^{(m)} + (k_0^2 n_0^2 - \beta_m^2) E_x^{(m)}(x, y, z) + k_0^2 \sum_{q \neq 0} A_q E_x^{(m-q)}(x, y, z) = 0.$$
 (6)

This equation holds for all partial-wave orders $m = 0, \pm 1, \pm 2, \dots$

In particular, when m=0 and the grating is weak ($|A_q| \ll 1$), Eq. 6 is approximately equivalent to the Helmholtz equation for the forward-propagating mode of a waveguide in the absence of a grating. Similarly, when m=-N (for simplicity, denoted as p=-N), Eq. 6 can be interpreted as the equation governing the backward-propagating mode in the waveguide.

Therefore, we may write:

$$E_x^{(0)}(x, y, z) = R(z)E_0(x, y), E_x^{(p)}(x, y, z) = S(z)E_0(x, y),$$
(7)

where E_0 is the mode profile E_x of the unperturbed waveguide, while R(z) and S(z) are slowly varying functions of z representing the amplitudes of forward and backward waves, respectively.

Substituting Eq. 7 into Eq. 6 for m = 0, p yields:

$$\begin{split} &\nabla^2[R(z)E_0(x,y)] + 2j\beta_0E_0(x,y)\frac{d}{dz}R(z) + (k_0^2n_0^2 - \beta_0^2)R(z)E_0(x,y) + k_0^2\sum_{q\neq 0}A_qE_x^{(-q)}(x,y,z) = 0, (8.1) \\ &\nabla^2[S(z)E_0(x,y)] + 2j\beta_pE_0(x,y)\frac{d}{dz}S(z) + \left(k_0^2n_0^2 - \beta_p^2\right)S(z)E_0(x,y) + k_0^2\sum_{q\neq 0}A_qE_x^{(p-q)}(x,y,z) = 0. \ (8.2) \end{split}$$

Note that E_0 satisfies the Helmholtz equation for a waveguide without a grating:

$$\frac{\partial^2}{\partial x^2} E_0 + \frac{\partial^2}{\partial y^2} E_0 + (k_0^2 n_0^2 - \beta^2) E_0 = 0, \tag{9}$$

where $\beta = \beta_0 + \delta$ is the propagation constant.

Combining Eqs. 8 & 9 and using $\beta_p = -\beta_0$, we obtain:

$$E_0 \frac{d^2}{dz^2} R + 2j\beta_0 E_0 \frac{d}{dz} R + (\beta^2 - \beta_0^2) R E_0 + k_0^2 \sum_{q \neq 0} A_q E_x^{(-q)} = 0,$$
 (10.1)

$$E_0 \frac{d^2}{dz^2} S - 2j\beta_0 E_0 \frac{d}{dz} S + (\beta^2 - \beta_0^2) S E_0 + k_0^2 \sum_{q \neq 0} A_q E_x^{(p-q)} = 0.$$
 (10.2)

When considering modes near the Bragg frequency, R(z) and S(z) are slowly varying functions of z. Hence, the terms proportional to d^2R/dz^2 and d^2S/dz^2 can be neglected, resulting in:

$$2j\beta_0 \frac{dR}{dz} E_0 + (\beta^2 - \beta_0^2)RE_0 + k_0^2 A_{-p} SE_0 + k_0^2 \sum_{q \neq 0, -p} A_q E_x^{(-q)} = 0,$$
 (11.1)

$$-2j\beta_0 \frac{dS}{dz} E_0 + (\beta^2 - \beta_0^2) S E_0 + k_0^2 A_p R E_0 + k_0^2 \sum_{q \neq 0, p} A_q E_x^{(p-q)} = 0.$$
 (11.2)

Multiplying both sides of Eq. 11 by E_0^* and integrating over the waveguide cross-section yields:

$$\frac{dR}{dz} - j\delta R - j\kappa_p^* S - \frac{jk_0^2}{2\beta_0 P} \sum_{q \neq 0, -p} \int A_q E_0^* E_x^{(-q)} dx dy = 0,$$
 (12.1)

$$-\frac{dS}{dz} - j\delta S - j\kappa_p R - \frac{jk_0^2}{2\beta_0 P} \sum_{q \neq 0} \int A_q E_0^* E_x^{(p-q)} dx dy = 0,$$
 (12.2)

where we have used the approximation $\beta^2 - \beta_0^2 \approx 2\beta_0 \delta$. The parameters P, κ_p, κ_p^* are defined as:

$$P = \int |E_0|^2 dx dy, \qquad (13.1)$$

$$\kappa_p = \frac{k_0^2}{2\beta_0 P} \int A_p |E_0|^2 dx dy, \qquad (13.2)$$

$$\kappa_{-p} = \frac{k_0^2}{2\beta_0 P} \int A_{-p} |E_0|^2 dx dy = \kappa_p^*. \tag{13.3}$$

Note that P represents the integrated optical intensity, not the optical power.

To solve Eq. 12, we need to evaluate the partial waves $E_x^{(m)}$ of different orders $(m \neq 0, p)$ using Eq. 6. To simplify the formulation, we neglect the $\partial E_x^{(m)}/\partial z$ term and assume that $E_x^{(0)}, E_x^{(p)}$ dominate the series expansion. These approximations are valid when the detuning from the Bragg frequency is small and the grating is weak. Under these assumptions, and combining Eqs. 6 & 7, we have:

$$\nabla^2 E_x^{(m)} + (k_0^2 n_0^2 - \beta_m^2) E_x^{(m)} = -k_0^2 E_0 (A_m R + A_{m-p} S), m \neq 0, p.$$
 (14)

The solution to this equation takes the form:

$$E_r^{(m)} = RE_m^{(0)} + SE_m^{(p)}, (15)$$

where E_m^0 and $E_m^{(p)}$ satisfy:

$$\nabla^2 E_m^{(i)} + (k_0^2 n_0^2 - \beta_m^2) E_m^{(i)} = -k_0^2 A_{m-i} E_0, m \neq 0, p; i = 0, p.$$
 (16)

Substituting Eq. 15 into Eq. 12 yields the **modified coupled-mode equations** for the higher-order grating:

$$\frac{dR}{dz} - j(\delta + \zeta_1)R = j(\kappa_p^* + \zeta_2)S, \tag{17.1}$$

$$-\frac{dS}{dz} - j(\delta + \zeta_3)S = j(\kappa_p + \zeta_4)R, \tag{17.2}$$

where ζ_{1-4} are **Streifer terms** (first introduced by William Strifer in [2]) defined as:

$$\zeta_1 = \frac{k_0^2}{2\beta_0 P} \sum_{q \neq 0-n} \int A_q E_0^* E_{-q}^{(0)} dx dy,$$

$$\zeta_2 = \frac{k_0^2}{2\beta_0 P} \sum_{q \neq 0-n} \int A_q E_0^* E_{-q}^{(p)} dx dy,$$

$$\zeta_3 = \frac{k_0^2}{2\beta_0 P} \sum_{q \neq 0, p} \int A_q E_0^* E_{p-q}^{(p)} dx dy,$$

$$\zeta_4 = \frac{k_0^2}{2\beta_0 P} \sum_{q \neq 0, p} \int A_q E_0^* E_{p-q}^{(0)} dx dy.$$

Here, the terms $E_m^{(i)}$ are obtained by solving Eq. 16. The definitions of P and κ_p are given in Eq. 13.

3. Dispersion relation for symmetric waveguide grating

In all cases, $\zeta_1 = \zeta_3$; when the grating is mirror-symmetric, that is, when $n^2(x, y, z)$ is an even function of z, we also have $\zeta_2 = \zeta_4$. Below, we restrict our discussion to this specific case. In this case, both A_p and κ_p are real. Combining Eqs. 17.1 and 17.2, we obtain:

$$\left[(\delta + \zeta_1)^2 - \left(\kappa_p + \zeta_2 \right)^2 + \frac{d^2}{dz^2} \right] R = 0.$$

To solve for the mode eigenfrequency in the grating, we use substitutions $\delta \to \frac{\Delta \omega}{v_g}$, $\frac{d^2}{dz^2} \to -k^2$, which yield:

$$\frac{\Delta\omega}{v_a} = -\zeta_1 \pm \sqrt{\left(\kappa_p + \zeta_2\right)^2 + k^2},\tag{18}$$

where $\Delta \omega$ is the eigenfrequency detuning from $\frac{c\beta_0}{n_{\rm eff}}$, v_g is the group velocity of the waveguide (in the absence of the grating), $k = \beta - \beta_0$ is the Bragg wave-vector detuning from the Bragg frequency β_0 .

4. Bound state in the continuum

Moreover, when the grating is 2^{nd} -order and mirror-symmetric, it can be shown that the imaginary parts of ζ_1, ζ_2 are equal [3] (a proof is provided below). Therefore, for the two branches of eigenmodes described by Eq. 18, one branch exhibits zero radiation loss (recalling that κ_p is real) at k = 0, while the other exhibits enhanced radiation loss. The eigenmode with suppressed radiation loss is known as a bound state in the continuum (BIC).

Existence theorem for BIC

For a 2^{nd} -order mirror-symmetric grating $(p = -2, n^2(x, y, -z) = n^2(x, y, z))$, there exists an eigenmode at the Bragg frequency with zero radiation loss.

Proof

To prove the existence of a BIC in a 2nd-order mirror-symmetric grating, it suffices to show that $Im(\zeta_1) = Im(\zeta_2)$. The existence of the BIC then follows from Eq. 18 (noting again that κ_p is real).

When no grating is present, the waveguide is lossless, and E_0 can be chosen to be real through an appropriate choice of phase reference [4].

As stated previously, ζ_1, ζ_2 are given by:

$$\zeta_1 = \frac{k_0^2}{2\beta_0 P} \sum_{q \neq 0, -p} \int A_q E_0^* E_{-q}^{(0)} dx dy, \qquad (19.1)$$

$$\zeta_2 = \frac{k_0^2}{2\beta_0 P} \sum_{\substack{q \neq 0, -n}} \int A_q E_0^* E_{-q}^{(p)} dx dy, \qquad (19.2)$$

where $E_m^{(i)}$ is determined from Eq. 16:

$$\nabla^2 E_m^{(i)} + (k_0^2 n_0^2 - \beta_m^2) E_m^{(i)} = -k_0^2 A_{m-i} E_0, m \neq 0, p; i = 0, p.$$
 (20)

Eq. 20 is an inhomogeneous Helmholtz equation of the form $\nabla^2 A + k^2 A = -f$ with $k_m^2 = k_0^2 n_0^2 - \beta_m^2$ and $f = k_0^2 A_{m-i} E_0$. Assuming the spatial variation of the refractive index is weak such that $k_0^2 n_0^2 \approx k_0^2 n_{\text{eff}}^2$, we obtain:

$$k_m^2 = k_0^2 n_{\text{eff}}^2 - \beta_m^2 = (\beta_0 + \delta)^2 - \left(\beta_0 + \frac{2\pi m}{\Lambda}\right)^2 = \left(\frac{\pi N}{\Lambda} + \delta\right)^2 - \left(\frac{\pi N}{\Lambda} + \frac{2\pi m}{\Lambda}\right)^2, \tag{21}$$

where the grating order N=2, the detuning δ is assumed to be small, and m is an integer representing the partial-wave order. For a 2nd-order grating, $k_m^2 < 0$ only when m=-1, otherwise $k_m^2 > 0$.

Recalling that the solution to Eq. 20 can be expressed as an integral over the Green's function [5]:

$$E_m^{(i)} = \int k_0^2 A_{m-i}(\mathbf{r}') E_0(\mathbf{r}') G_m(\mathbf{r}, \mathbf{r}') d\mathbf{r}', \qquad (22.1)$$

$$G_m(\mathbf{r}, \mathbf{r}') = \frac{\exp(jk_m|\mathbf{r} - \mathbf{r}'|)}{4\pi|\mathbf{r} - \mathbf{r}'|},$$
 (22.2)

where both r and r' are two-dimensional position vectors: r = (x, y), r' = (x', y').

Combining Eqs. 21 and 22, and recalling that E_0 is real (due to lossless waveguide) and that A_{m-i} is real for a mirror-symmetric grating, we find that:

When m=-1, k_m is an imaginary number, $E_m^{(i)}$ possesses a nonzero imaginary part. Otherwise $E_m^{(i)}$ is a real-valued field.

From this observation and Eq. 19, the imaginary parts of ζ_1, ζ_2 reduce to:

$$\operatorname{Im}(\zeta_1) = \frac{k_0^2}{2\beta_0 P} \operatorname{Im}\left[\int A_1 E_0^* E_{-1}^{(0)} dx dy\right],\tag{23.1}$$

$$\operatorname{Im}(\zeta_2) = \frac{k_0^2}{2\beta_0 P} \operatorname{Im} \left[\int A_1 E_0^* E_{-1}^{(-2)} dx dy \right]. \tag{23.2}$$

Since $A_1 = A_{-1}$ for a mirror-symmetric grating, it follows from Eq. 22 that $E_{-1}^{(0)} = E_{-1}^{(-2)}$. Therefore, we conclude that:

$$Im(\zeta_1) = Im(\zeta_2). \tag{24}$$

This relationship proves the existence of a bound state in the continuum (BIC).

Q.E.D.

Reference

- [1] Millett, R., Schriemer, H., Hall, T., & Hinzer, K. (2008). Effects of grating order and tooth rounding in laterally coupled distributed feedback lasers. *Optical and quantum electronics*, 40(14), 1239-1245.
- [2] Streifer, W., Scifres, D., & Burnham, R. (2003). Coupled wave analysis of DFB and DBR lasers. *IEEE Journal of Quantum Electronics*, 13(4), 134-141.
- [3] Kazarinov, R., & Henry, C. (2003). Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. *IEEE Journal of Quantum Electronics*, 21(2), 144-150.
- [4] Snyder, A. W., & Love, J. D. (1983). *Optical waveguide theory* (Vol. 175). London: Chapman and hall. Section 30-4: Fields of non-absorbing waveguides.
- [5] https://en.wikipedia.org/wiki/Helmholtz equation#Inhomogeneous Helmholtz equation