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1. Introduction 

 

In this note, we present a detailed derivation of the modified coupled-mode equation for higher-order 

gratings. Using this equation, we demonstrate the existence of bound states in the continuum for second-

order mirror-symmetric gratings. 

 

2. Modified coupled mode equations 

 

Following Ref. [1], we derive the modified coupled-mode equations for higher-order waveguide Bragg 

gratings. A quasi-TE mode in a waveguide grating of order 𝑁 is governed by the Helmholtz equation: 

 

∇ଶ𝐸௫ሺ𝑥,𝑦, 𝑧ሻ ൅ 𝑘଴
ଶ𝑛ଶሺ𝑥,𝑦, 𝑧ሻ𝐸௫ሺ𝑥,𝑦, 𝑧ሻ ൌ 0, ሺ1ሻ 

 

where 𝑛ሺ𝑥,𝑦, 𝑧ሻ  is the refractive-index profile, and 𝑘଴ ൌ 2𝜋/𝜆  is the vacuum wavenumber with 𝜆 

being the wavelength in vacuum. 

Since 𝑛ଶሺ𝑥,𝑦, 𝑧ሻ is periodic in 𝑧 for a waveguide grating extending along the 𝑧-axis, we may express 

it as a Fourier expansion: 

 

𝑛ଶሺ𝑥,𝑦, 𝑧ሻ ൌ 𝑛଴
ଶሺ𝑥,𝑦ሻ ൅෍𝐴௤ሺ𝑥,𝑦ሻ exp ൬𝑗

2𝜋𝑞𝑧
Λ

൰
௤ஷ଴

, ሺ2ሻ 

 

where Λ is the grating period, and 𝑛଴
ଶሺ𝑥,𝑦ሻ represents the relative permittivity profile averaged over 

one grating period. 

Combining Eqs. 1 and 2, we obtain 

 

∇ଶ𝐸௫ ൅ 𝑘଴
ଶ𝑛଴

ଶ𝐸௫ ൅ 𝑘଴
ଶ𝐸௫෍𝐴௤ exp ൬𝑗

2𝜋𝑞𝑧
Λ

൰
௤ஷ଴

ൌ 0, ሺ3ሻ 

 

where the summation index 𝑞 ൌ േ1,േ2,…. 

According to Bloch’s theorem, the electric field of an eigenmode in a periodic medium can be expressed 

as an infinite series: 

𝐸௫ሺ𝑥,𝑦, 𝑧ሻ ൌ ෍ 𝐸௫
ሺ௠ሻሺ𝑥,𝑦, 𝑧ሻ expሺ𝑗𝛽௠𝑧ሻ,

ஶ

௠ୀିஶ

ሺ4ሻ 

where 𝛽௠ ൌ 𝛽଴ ൅
ଶగ௠

ஃ
, 𝛽଴ ൌ 𝑁𝜋/Λ is the Bragg frequency, 𝐸௫

ሺ௠ሻሺ𝑥,𝑦, 𝑧ሻ represents the 𝑚-th order 

partial wave (𝑚 ൌ 0,േ1,േ2,…), which satisfies: 

 

𝐸௫
ሺ௠ሻሺ𝑥,𝑦, 𝑧ሻ ൌ 𝐸௫,଴

ሺ௠ሻሺ𝑥,𝑦ሻ expሺ𝑗𝛿𝑧ሻ , ሺ5ሻ 



 

where 𝛿 ൌ 𝛽 െ 𝛽଴ ൌ
ଶగ௡౛౜౜

ఒ
െ 𝛽଴ is the detuning of the propagation constant from the Bragg frequency. 

Substituting Eq. 4 into Eq. 3 gives: 

 

∇ଶ ෍ 𝐸௫
ሺ௠ሻሺ𝑥,𝑦, 𝑧ሻ expሺ𝑗𝛽௠𝑧ሻ

ஶ

௠ୀିஶ

൅ 𝑘଴
ଶ𝑛଴

ଶ ෍ 𝐸௫
ሺ௠ሻሺ𝑥,𝑦, 𝑧ሻ expሺ𝑗𝛽௠𝑧ሻ

ஶ

௠ୀିஶ

൅ 𝑘଴
ଶ ෍ ෍𝐴௤𝐸௫

ሺ௠ሻሺ𝑥,𝑦, 𝑧ሻ exp ൤𝑗 ൬𝛽௠ ൅
2𝜋𝑞
Λ
൰ 𝑧൨

௤ஷ଴

ஶ

௠ୀିஶ

ൌ 0. 

For this equation to hold, the coefficient of each Fourier component must vanish. 

Noting that all partial waves 𝐸௫
ሺ௠ሻ share the same oscillation frequency with respect to 𝑧 (see Eq. 5), 

we obtain: 

 

∇ଶ𝐸௫
ሺ௠ሻሺ𝑥,𝑦, 𝑧ሻ ൅ 2𝑗𝛽௠

𝜕
𝜕𝑧
𝐸௫
ሺ௠ሻ ൅ ሺ𝑘଴

ଶ𝑛଴
ଶ െ 𝛽௠ଶ ሻ𝐸௫

ሺ௠ሻሺ𝑥,𝑦, 𝑧ሻ ൅ 𝑘଴
ଶ෍𝐴௤𝐸௫

ሺ௠ି௤ሻሺ𝑥,𝑦, 𝑧ሻ
௤ஷ଴

ൌ 0. ሺ6ሻ 

 

This equation holds for all partial-wave orders 𝑚 ൌ 0,േ1,േ2, …. 

In particular, when 𝑚 ൌ 0 and the grating is weak (ห𝐴௤ห ≪ 1), Eq. 6 is approximately equivalent to the 

Helmholtz equation for the forward-propagating mode of a waveguide in the absence of a grating. 

Similarly, when 𝑚 ൌ െ𝑁 (for simplicity, denoted as 𝑝 ൌ െ𝑁), Eq. 6 can be interpreted as the equation 

governing the backward-propagating mode in the waveguide. 

 

Therefore, we may write: 

 

𝐸௫
ሺ଴ሻሺ𝑥,𝑦, 𝑧ሻ ൌ 𝑅ሺ𝑧ሻ𝐸଴ሺ𝑥,𝑦ሻ,𝐸௫

ሺ௣ሻሺ𝑥,𝑦, 𝑧ሻ ൌ 𝑆ሺ𝑧ሻ𝐸଴ሺ𝑥,𝑦ሻ, ሺ7ሻ 

 

where 𝐸଴  is the mode profile 𝐸௫  of the unperturbed waveguide, while 𝑅ሺ𝑧ሻ  and 𝑆ሺ𝑧ሻ  are slowly 

varying functions of 𝑧 representing the amplitudes of forward and backward waves, respectively.  

 

Substituting Eq. 7 into Eq. 6 for 𝑚 ൌ 0,𝑝 yields: 

 

∇ଶሾ𝑅ሺ𝑧ሻ𝐸଴ሺ𝑥,𝑦ሻሿ ൅ 2𝑗𝛽଴𝐸଴ሺ𝑥,𝑦ሻ
𝑑
𝑑𝑧
𝑅ሺ𝑧ሻ ൅ ሺ𝑘଴

ଶ𝑛଴
ଶ െ 𝛽଴

ଶሻ𝑅ሺ𝑧ሻ𝐸଴ሺ𝑥,𝑦ሻ ൅ 𝑘଴
ଶ෍𝐴௤𝐸௫

ሺି௤ሻሺ𝑥,𝑦, 𝑧ሻ
௤ஷ଴

ൌ 0, ሺ8.1ሻ 

∇ଶሾ𝑆ሺ𝑧ሻ𝐸଴ሺ𝑥,𝑦ሻሿ ൅ 2𝑗𝛽௣𝐸଴ሺ𝑥,𝑦ሻ
𝑑
𝑑𝑧
𝑆ሺ𝑧ሻ ൅ ൫𝑘଴

ଶ𝑛଴
ଶ െ 𝛽௣ଶ൯𝑆ሺ𝑧ሻ𝐸଴ሺ𝑥,𝑦ሻ ൅ 𝑘଴

ଶ෍𝐴௤𝐸௫
ሺ௣ି௤ሻሺ𝑥,𝑦, 𝑧ሻ

௤ஷ଴

ൌ 0. ሺ8.2ሻ 

 

Note that 𝐸଴ satisfies the Helmholtz equation for a waveguide without a grating: 

 

𝜕ଶ

𝜕𝑥ଶ
𝐸଴ ൅

𝜕ଶ

𝜕𝑦ଶ
𝐸଴ ൅ ሺ𝑘଴

ଶ𝑛଴
ଶ െ 𝛽ଶሻ𝐸଴ ൌ 0, ሺ9ሻ 

 

where 𝛽 ൌ 𝛽଴ ൅ 𝛿 is the propagation constant. 



Combining Eqs. 8 & 9 and using 𝛽௣ ൌ െ𝛽଴, we obtain: 

 

𝐸଴
𝑑ଶ

𝑑𝑧ଶ
𝑅 ൅ 2𝑗𝛽଴𝐸଴

𝑑
𝑑𝑧
𝑅 ൅ ሺ𝛽ଶ െ 𝛽଴

ଶሻ𝑅𝐸଴ ൅ 𝑘଴
ଶ෍𝐴௤𝐸௫

ሺି௤ሻ

௤ஷ଴

ൌ 0, ሺ10.1ሻ 

 

𝐸଴
𝑑ଶ

𝑑𝑧ଶ
𝑆 െ 2𝑗𝛽଴𝐸଴

𝑑
𝑑𝑧
𝑆 ൅ ሺ𝛽ଶ െ 𝛽଴

ଶሻ𝑆𝐸଴ ൅ 𝑘଴
ଶ෍𝐴௤𝐸௫

ሺ௣ି௤ሻ

௤ஷ଴

ൌ 0. ሺ10.2ሻ 

 

When considering modes near the Bragg frequency, 𝑅ሺ𝑧ሻ and 𝑆ሺ𝑧ሻ are slowly varying functions of 𝑧. 

Hence, the terms proportional to 𝑑ଶ𝑅/𝑑𝑧ଶ and 𝑑ଶ𝑆/𝑑𝑧ଶ can be neglected, resulting in: 

 

2𝑗𝛽଴
𝑑𝑅
𝑑𝑧

𝐸଴ ൅ ሺ𝛽ଶ െ 𝛽଴
ଶሻ𝑅𝐸଴ ൅ 𝑘଴

ଶ𝐴ି௣𝑆𝐸଴ ൅ 𝑘଴
ଶ ෍ 𝐴௤𝐸௫

ሺି௤ሻ

௤ஷ଴,ି௣

ൌ 0, ሺ11.1ሻ 

 

െ2𝑗𝛽଴
𝑑𝑆
𝑑𝑧

𝐸଴ ൅ ሺ𝛽ଶ െ 𝛽଴
ଶሻ𝑆𝐸଴ ൅ 𝑘଴

ଶ𝐴௣𝑅𝐸଴ ൅ 𝑘଴
ଶ ෍ 𝐴௤𝐸௫

ሺ௣ି௤ሻ

௤ஷ଴,௣

ൌ 0. ሺ11.2ሻ 

 

Multiplying both sides of Eq. 11 by 𝐸଴
∗ and integrating over the waveguide cross-section yields: 

 

𝑑𝑅
𝑑𝑧

െ 𝑗𝛿𝑅 െ 𝑗𝜅௣∗𝑆 െ
𝑗𝑘଴

ଶ

2𝛽଴𝑃
෍ න𝐴௤𝐸଴

∗𝐸௫
ሺି௤ሻ𝑑𝑥𝑑𝑦

௤ஷ଴,ି௣

ൌ 0, ሺ12.1ሻ 

െ
𝑑𝑆
𝑑𝑧

െ 𝑗𝛿𝑆 െ 𝑗𝜅௣𝑅 െ
𝑗𝑘଴

ଶ

2𝛽଴𝑃
෍ න𝐴௤𝐸଴

∗𝐸௫
ሺ௣ି௤ሻ𝑑𝑥𝑑𝑦

௤ஷ଴,௣

ൌ 0, ሺ12.2ሻ 

 

where we have used the approximation 𝛽ଶ െ 𝛽଴
ଶ ൎ 2𝛽଴𝛿. The parameters 𝑃, 𝜅௣, 𝜅௣∗  are defined as: 

 

𝑃 ൌ න|𝐸଴|ଶ𝑑𝑥𝑑𝑦 , ሺ13.1ሻ 

𝜅௣ ൌ
𝑘଴
ଶ

2𝛽଴𝑃
න𝐴௣|𝐸଴|ଶ𝑑𝑥𝑑𝑦 , ሺ13.2ሻ 

𝜅ି௣ ൌ
𝑘଴
ଶ

2𝛽଴𝑃
න𝐴ି௣|𝐸଴|ଶ𝑑𝑥𝑑𝑦 ൌ 𝜅௣∗ . ሺ13.3ሻ 

 

Note that 𝑷 represents the integrated optical intensity, not the optical power. 

 

To solve Eq. 12, we need to evaluate the partial waves 𝐸௫
ሺ௠ሻ of different orders (𝑚 ് 0,𝑝) using Eq. 6. 

To simplify the formulation, we neglect the 𝜕𝐸௫
ሺ௠ሻ/𝜕𝑧 term and assume that 𝐸௫

ሺ଴ሻ,𝐸௫
ሺ௣ሻ dominate the 

series expansion. These approximations are valid when the detuning from the Bragg frequency is small 

and the grating is weak. Under these assumptions, and combining Eqs. 6 & 7, we have: 

 

∇ଶ𝐸௫
ሺ௠ሻ ൅ ሺ𝑘଴

ଶ𝑛଴
ଶ െ 𝛽௠ଶ ሻ𝐸௫

ሺ௠ሻ ൌ െ𝑘଴
ଶ𝐸଴൫𝐴௠𝑅 ൅ 𝐴௠ି௣𝑆൯,𝑚 ് 0,𝑝. ሺ14ሻ 

 



The solution to this equation takes the form: 

 

𝐸௫
ሺ௠ሻ ൌ 𝑅𝐸௠

ሺ଴ሻ ൅ 𝑆𝐸௠
ሺ௣ሻ, ሺ15ሻ 

 

where 𝐸௠଴  and 𝐸௠
ሺ௣ሻ satisfy: 

 

∇ଶ𝐸௠
ሺ௜ሻ ൅ ሺ𝑘଴

ଶ𝑛଴
ଶ െ 𝛽௠ଶ ሻ𝐸௠

ሺ௜ሻ ൌ െ𝑘଴
ଶ𝐴௠ି௜𝐸଴,𝑚 ് 0,𝑝; 𝑖 ൌ 0,𝑝. ሺ16ሻ 

 

 

Substituting Eq. 15 into Eq. 12 yields the modified coupled-mode equations for the higher-order 

grating: 

 

𝑑𝑅
𝑑𝑧

െ 𝑗ሺ𝛿 ൅ 𝜁ଵሻ𝑅 ൌ 𝑗൫𝜅௣∗ ൅ 𝜁ଶ൯𝑆, ሺ17.1ሻ 

െ
𝑑𝑆
𝑑𝑧

െ 𝑗ሺ𝛿 ൅ 𝜁ଷሻ𝑆 ൌ 𝑗൫𝜅௣ ൅ 𝜁ସ൯𝑅, ሺ17.2ሻ 

 

where 𝜁ଵିସ are Streifer terms (first introduced by William Strifer in [2]) defined as: 

𝜁ଵ ൌ
𝑘଴
ଶ

2𝛽଴𝑃
෍ න𝐴௤𝐸଴

∗𝐸ି௤
ሺ଴ሻ𝑑𝑥𝑑𝑦

௤ஷ଴,ି௣

, 

𝜁ଶ ൌ
𝑘଴
ଶ

2𝛽଴𝑃
෍ න𝐴௤𝐸଴

∗𝐸ି௤
ሺ௣ሻ𝑑𝑥𝑑𝑦

௤ஷ଴,ି௣

, 

𝜁ଷ ൌ
𝑘଴
ଶ

2𝛽଴𝑃
෍ න𝐴௤𝐸଴

∗𝐸௣ି௤
ሺ௣ሻ 𝑑𝑥𝑑𝑦

௤ஷ଴,௣

, 

𝜁ସ ൌ
𝑘଴
ଶ

2𝛽଴𝑃
෍ න𝐴௤𝐸଴

∗𝐸௣ି௤
ሺ଴ሻ 𝑑𝑥𝑑𝑦

௤ஷ଴,௣

. 

Here, the terms 𝐸௠
ሺ௜ሻ are obtained by solving Eq. 16. The definitions of 𝑃 and 𝜅௣ are given in Eq. 13. 

 

3. Dispersion relation for symmetric waveguide grating 

 

In all cases, 𝜁ଵ ൌ 𝜁ଷ; when the grating is mirror-symmetric, that is, when 𝑛ଶሺ𝑥,𝑦, 𝑧ሻ is an even 

function of 𝑧, we also have 𝜁ଶ ൌ 𝜁ସ. Below, we restrict our discussion to this specific case. In this 

case, both 𝐴௣ and 𝜅௣ are real. Combining Eqs. 17.1 and 17.2, we obtain: 

 

ቈሺ𝛿 ൅ 𝜁ଵሻଶ െ ൫𝜅௣ ൅ 𝜁ଶ൯
ଶ
൅
𝑑ଶ

𝑑𝑧ଶ
቉ 𝑅 ൌ 0. 

 

To solve for the mode eigenfrequency in the grating, we use substitutions 𝛿 →
୼ఠ

௩೒
, 

ௗమ

ௗ௭మ
→ െ𝑘ଶ, which 

yield: 



Δ𝜔
𝑣௚

ൌ െ𝜁ଵ േ ට൫𝜅௣ ൅ 𝜁ଶ൯
ଶ
൅ 𝑘ଶ, ሺ18ሻ 

 

where Δ𝜔 is the eigenfrequency detuning from 
௖ఉబ
௡౛౜౜

, 𝑣௚ is the group velocity of the waveguide (in the 

absence of the grating), 𝑘 ൌ 𝛽 െ 𝛽଴ is the Bragg wave-vector detuning from the Bragg frequency 𝛽଴. 

 

 

4. Bound state in the continuum 

Moreover, when the grating is 2nd-order and mirror-symmetric, it can be shown that the imaginary parts 

of 𝜁ଵ, 𝜁ଶ are equal [3] (a proof is provided below). Therefore, for the two branches of eigenmodes 

described by Eq. 18, one branch exhibits zero radiation loss (recalling that 𝜅௣ is real) at 𝑘 ൌ 0, while 

the other exhibits enhanced radiation loss. The eigenmode with suppressed radiation loss is known as a 

bound state in the continuum (BIC). 

 

Existence theorem for BIC 

For a 2nd-order mirror-symmetric grating (𝑝 ൌ െ2, 𝑛ଶሺ𝑥,𝑦,െ𝑧ሻ ൌ 𝑛ଶሺ𝑥,𝑦, 𝑧ሻ), there exists an 

eigenmode at the Bragg frequency with zero radiation loss. 

 

Proof 

To prove the existence of a BIC in a 2nd-order mirror-symmetric grating, it suffices to show that 

Imሺ𝜁ଵሻ ൌ Imሺ𝜁ଶሻ. The existence of the BIC then follows from Eq. 18 (noting again that 𝜅௣ is real). 

 

When no grating is present, the waveguide is lossless, and 𝐸଴ can be chosen to be real through an 

appropriate choice of phase reference [4]. 

 

As stated previously, 𝜁ଵ, 𝜁ଶ are given by: 

𝜁ଵ ൌ
𝑘଴
ଶ

2𝛽଴𝑃
෍ න𝐴௤𝐸଴

∗𝐸ି௤
ሺ଴ሻ𝑑𝑥𝑑𝑦

௤ஷ଴,ି௣

, ሺ19.1ሻ 

𝜁ଶ ൌ
𝑘଴
ଶ

2𝛽଴𝑃
෍ න𝐴௤𝐸଴

∗𝐸ି௤
ሺ௣ሻ𝑑𝑥𝑑𝑦

௤ஷ଴,ି௣

, ሺ19.2ሻ 

where 𝐸௠
ሺ௜ሻ is determined from Eq. 16: 

 

∇ଶ𝐸௠
ሺ௜ሻ ൅ ሺ𝑘଴

ଶ𝑛଴
ଶ െ 𝛽௠ଶ ሻ𝐸௠

ሺ௜ሻ ൌ െ𝑘଴
ଶ𝐴௠ି௜𝐸଴,𝑚 ് 0,𝑝; 𝑖 ൌ 0,𝑝. ሺ20ሻ 

 

Eq. 20 is an inhomogeneous Helmholtz equation of the form ∇ଶ𝐴 ൅ 𝑘ଶ𝐴 ൌ െ𝑓 with 𝑘௠ଶ ൌ 𝑘଴
ଶ𝑛଴

ଶ െ

𝛽௠ଶ  and 𝑓 ൌ 𝑘଴
ଶ𝐴௠ି௜𝐸଴. Assuming the spatial variation of the refractive index is weak such that 

𝑘଴
ଶ𝑛଴

ଶ ൎ 𝑘଴
ଶ𝑛ୣ୤୤

ଶ , we obtain: 

 

𝑘௠ଶ ൌ 𝑘଴
ଶ𝑛ୣ୤୤

ଶ െ 𝛽௠ଶ ൌ ሺ𝛽଴ ൅ 𝛿ሻଶ െ ൬𝛽଴ ൅
2𝜋𝑚
Λ

൰
ଶ

ൌ ൬
𝜋𝑁
Λ
൅ 𝛿൰

ଶ

െ ൬
𝜋𝑁
Λ
൅
2𝜋𝑚
Λ

൰
ଶ

, ሺ21ሻ 

 



where the grating order 𝑁 ൌ 2, the detuning 𝛿 is assumed to be small, and 𝑚 is an integer 

representing the partial-wave order. For a 2nd-order grating, 𝑘௠ଶ ൏ 0 only when 𝑚 ൌ െ1, otherwise 

𝑘௠ଶ ൐ 0. 

 

Recalling that the solution to Eq. 20 can be expressed as an integral over the Green’s function [5]: 

  

𝐸௠
ሺ௜ሻ ൌ න𝑘଴

ଶ𝐴௠ି௜ሺ𝒓ᇱሻ𝐸଴ሺ𝒓ᇱሻ𝐺௠ሺ𝒓,𝒓ᇱሻ𝑑𝒓ᇱ , ሺ22.1ሻ 

𝐺௠ሺ𝒓,𝒓ᇱሻ ൌ
expሺ𝑗𝑘௠|𝒓 െ 𝒓ᇱ|ሻ

4𝜋|𝒓 െ 𝒓ᇱ|
, ሺ22.2ሻ 

 

where both 𝒓 and 𝒓ᇱ are two-dimensional position vectors: 𝒓 ൌ ሺ𝑥,𝑦ሻ, 𝒓ᇱ ൌ ሺ𝑥ᇱ,𝑦ᇱሻ. 

 

Combining Eqs. 21 and 22, and recalling that 𝐸଴ is real (due to lossless waveguide) and that 𝐴௠ି௜ is 

real for a mirror-symmetric grating, we find that: 

 

When 𝑚 ൌ െ1, 𝑘௠ is an imaginary number, 𝐸௠
ሺ௜ሻ possesses a nonzero imaginary part. 

Otherwise 𝐸௠
ሺ௜ሻ is a real-valued field. 

 

From this observation and Eq. 19, the imaginary parts of 𝜁ଵ, 𝜁ଶ reduce to: 

 

Imሺ𝜁ଵሻ ൌ
𝑘଴
ଶ

2𝛽଴𝑃
Im ൤න𝐴ଵ𝐸଴

∗𝐸ିଵ
ሺ଴ሻ𝑑𝑥𝑑𝑦൨ , ሺ23.1ሻ 

Imሺ𝜁ଶሻ ൌ
𝑘଴
ଶ

2𝛽଴𝑃
Im ൤න𝐴ଵ𝐸଴

∗𝐸ିଵ
ሺିଶሻ𝑑𝑥𝑑𝑦൨ . ሺ23.2ሻ 

 

Since 𝐴ଵ ൌ 𝐴ିଵ for a mirror-symmetric grating, it follows from Eq. 22 that 𝐸ିଵ
ሺ଴ሻ ൌ 𝐸ିଵ

ሺିଶሻ. Therefore, 

we conclude that: 

 

Imሺ𝜁ଵሻ ൌ Imሺ𝜁ଶሻ. ሺ24ሻ 

 

This relationship proves the existence of a bound state in the continuum (BIC). 

 

Q.E.D. 
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