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Introduction to Kerr Nonlinearity and Solitons

Kerr effect refers to the phenomenon that the refractive index of a material changes linearly with the intensity
of an external electric field. Light passing through a material with the Kerr effect can induce a refractive
index change since light is associated with an oscillating electric field. Formally, this change in refractive
index is formulated as ∆n = n0 + n2I [1]. Here, n represents the index of refraction and I stands for the
intensity of light. n0 is the refractive index at zero light intensity, and n2 is called the Kerr coefficient or
second-order nonlinear refractive index. Kerr effect has been observed in various materials, including Si3N4,
Ti2O5, SiO2, MgF2, to mention a few.

Kerr effect is a typical nonlinear optical effect. In fact, if we substitute the intensity-dependent refractive
index into Maxwell’s equations, we can obtain a wave equation of E with nonlinear terms. This equation
has no solutions that oscillate at a single frequency. Instead, the electric field must oscillate at multiple
frequencies even if the field is excited by a dipole in a harmonic oscillation. In this case, we say the dynamics
of the electromagnetic fields is nonlinear, and the solutions to the nonlinear dynamic equation with stationary
waveforms are called solitons.

Fiber Solitons

Fiber solitons are optical pulses that maintain their shapes when travelling along an optical fiber, which
comes from an exact balance between waveguide dispersion and the Kerr effect. This concept was first
proposed in 1973 by two scientists at Bell Laboratories, Akira Hasegawa and Frederick Tappert, in a series of
groundbreaking papers [2,3]. At that time, waveguide dispersion was widely recognized as an annoying effect
that distorts signals transmitting through optical fibers. The proposal of nonlinear effect for countering the
waveguide dispersion immediately attracted immense interest, especially in the potential of fiber solitons for
high-speed communication. Although the industry today exclusively implements dense wavelength division
multiplexing as an alternative to soliton communication for a higher signal capacity and lower cost, fiber
solitons can still serve as a good starting point for diving into the world of nonlinear optics.

Here we introduce a single analytical model that explains the basic dynamics of fiber solitons [2,3]. Let’s
consider a single-mode waveguide with effective index,

n = n0(ω) + iχ(ω) + n2E2, (1)
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where χ(ω) > 0 characterizes optical attenuation, and n2 describes Kerr nonlinearity. We assume the electric
field in the waveguide has the form that

E(x, r, t) = R(r)Re[ϕ(x, t) exp[i(k0x− ω0t)]], (2)

where Rr corresponds to electric field distribution in the transverse direction, ϕ(x, t) represents the envelope
shape of the wave along the longitudinal direction, and exp[i(k0x − ω0t)] is a carrier wave such that
ck0 = ω0n0(ω0).

If we substitute Eqs. 1 and 2 into Maxwell’s equations and integrate out the radial coordinate r, we will
obtain a one-dimensional nonlinear wave equation of the envelope:

i(∂ϕ
∂t

+ ω′
0
∂ϕ

∂x
+ v0ϕ) + 1

2ω
′′
0
∂2ϕ

∂x2 + αω0n2

n0
|ϕ|2ϕ = 0. (3)

Here, ω′
0 = ∂ω0/∂k0 is the group velocity at ω0, ω′′

0 = ∂2ω0/∂k
2
0 represents the group velocity dispersion at

ω0, v0 = χ(ω0)ω0/n0 is the scaled optical loss in the waveguide, and α is a unitless quantity that depends on
the radial variation of the electric field R(r).

Now let’s analyze the physical meaning of Eq. 3. The first two terms describe an envelope translating
at a constant group velocity ω′

0, the third, fourth, and fifth terms account for optical loss, group velocity
dispersion, and Kerr nonlinearity, respectively.

We are particularly interested in solutions to Eq. 3 that feature stationary envelopes. These envelopes are
allowed to move in space but their waveform must remain unchanged. Such stationary solutions to the
nonlinear equation are called (Kerr) solitons. In searching for Kerr soliton solutions to Eq. 3, we treat the
scenarios ω′′

0 > 0 and ω′′
0 < 0 individually, since they have quite different solution sets. The case of ω′′

0 > 0
corresponds to anomalous dispersion, meaning that the group velocity of light increases with frequency. In
contrast, ω′′

0 represents normal dispersion, whih features a group velocity of light decreasing with frequency.
The waveguide dispersion includes two parts, material dispersion and geometrical dispersion. Typically,
material dispersion is normal dispersion, while the geometrical dispersion could be normal or anomalous,
depending on if the optical confinement is weak or strong.

Bright solitons

If the waveguide has anomalous dispersion (ω′′
0 > 0), Eq. 3 has soliton solutions with light intensity localized

both in space and in time, namely optical pulses. These solutions are called bright solitons or bright pulses
and can be expressed as

ϕ(x, t) = Essech( t− t0 − x/vg

τ0
) exp[i(kx− Ωt)], (4)

where Es is the maximum field intensity, τ0 is the pulse temporal half-width, Ω is the frequency shift,
k is the wavenumber shift, and vg is the transmission speed of the pulse. These quantities are related
through Ω = kω′

0 + 1
2k

2ω′′
0 − αω0n2E

2
s/2n0, vg = ω′

0 + kω′′
0 , and E2

s = n0ω
′′
0/αω0n2v

2
gτ

2
0 , and t0 is the

pulse center. Combining the solved envelope and the carrier wave, we obtain the frequency of the soliton
ωc = ω0 + kω′

0 + 1
2k

2ω′′
0 − αω0n2E

2
s/2n0 and the wave number kc = k0 + k. Since we have five parameters

(Es, τ0,Ω, k, vg) with three constraints, there are two independent parameters that can be chosen arbitrarily
by the initial condition.
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Dark solitons

If the waveguide has normal dispersion (ω′′
0 < 0), Eq. 3 has solutions known as dark solitons, dark pulses, or

envelope shocks. These solutions feature a background of constant light intensity with a localized dip. Dark
solitons have the form that

ϕ(x, t) = Estanh( t− t0 − x/vg

τ0
) exp[i(kx− Ωt)], (5)

where the notations are the same as in Eq. 4. The parameters are related through Ω = kω′
0 + 1

2k
2ω′′

0 −
αω0n2E

2
s/n0, vg = ω′

0 + kω′′
0 , and E2

s = −n0ω
′′
0/αω0n2v

2
gτ

2
0 .

Dissipative Kerr Solitons in Optical Microresonators

Fiber Kerr solitons constitute an elegant solution to coherent multi-wavelength optical sources. Unfortunately,
their implementation requires a mode-locked laser that injects optical pulses and a large volume for deploying
optical fibers, rendering fiber-based soliton generators expensive and bulky and limiting their applications.
For these reasons, people gradually lost their interest in the study of Kerr solitons.

But things changed in 2007, when a group of Max Planck Institute of Quantum Optics led by Prof. Tobias
J. Kippenberg (now at EPFL) demonstrated that optical microresonators could generate Kerr solitons [4].
Remarkably, the generation of Kerr solitons in microresonators can be pumped by a continuous wave laser
and requires a compact footprint. Moreover, the frequency spectrum of the generated Kerr solitons exhibits
coherent equidistant comb lines, known as optical frequency combs, which are ideal for applications such as
high-speed optical communication, precision metrology, and light detection and ranging (LIDAR). These
fascinating properties of microresonator Kerr solitons raise considerable interests in the following decade.

Here we present a simple physics picture of how Kerr solitons form in an optical microresonator with Kerr
nonlinearity. First, light is pumped into a single mode of the resonator by a continuous-wave laser. Then, the
continuous-wave light circulating in the resonator gradually localizes and becomes an optical pulse due to
Kerr nonlinearity. In frequency domain, this localization of optical waveform corresponds to the excitation
of sideband resonances of the microresonator due to four-wave mixing. The optical pulse circulates in the
microresonator and ejects part of its energy to the bus waveguide each time when it passes through the region
evanescently coupled to the bus waveguide. This results in a periodic train of optical pulses emitted to the
bus waveguide, which features a frequency spectrum consisting of equidistant spectral lines. An informative
illustration of the formation of microresonator Kerr solitons can be found in [5].

There are some key differences between fiber Kerr solitons and microresonator Kerr solitons. First, there is
no external energy input during the propagation of fiber solitons, while microresonator Kerr solitons accept
external gain from its periodic passenge through the bus waveguide. Therefore, the formation of Kerr solitons
in microresonators involves the balance between gain and loss, in addition to that between dispersion and the
nonlinear effect. Note that the formation of fiber solitons only involve the balance between dispersion and
nonlinear effect. Since microresonator Kerr solitons are formed in an open system with energy exchange with
the environment, we call these solitons dissipative Kerr solitons (DKS).

Second, electromagnetic field in a microresonator must satisfy a periodic condition. This results in the
emission of a periodic train of the optical pulses into the bus waveguide and a discrete optical spectrum of
the DKSs. In contrast, fiber solitons exhibit a continuous optical spectrum since they are not constraint by a
periodic boundary condition. When the fiber solitons have a broadband continuous optical spectrum, we call
this spectrum a supercontinuum [6]. Supercontinuum is another hot research topic in recent years.

Lugiato-Lefever Formalism

In this section, we introduce the Lugiato-lefever equation (LLE) that quantitatively describes the formation
of dissipative Kerr solitons in a microresonator [7]. This equation establishes the time evolution equation of
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optical fields in a nonlinear microresonator and explains the formation of solitons. The idea of the derivation
of LLE is quite simple, one only needs to transform the modal equations derived in [8], which utilizes coupled
mode theory to explain the formation of optical frequency combs in a microresonator. All we need to do is to
transform the equations of modal complex amplitudes to a differential equation of optical field envelope. We
will detail this transform procedure below.

Each mode of the microresonator can be indexed by an integer. In particular, we denote the index of the
pumped mode as l0. The frequencies of resonator modes are a function of the mode index and can be
expressed as a Taylor series:

ωl = ωl0 +
N∑

n=1

ζn

n! (l − l0)n, (6)

where ωl is the frequency of the l-th mode, ζn is the n-th order dispersion coefficient with ζ1 the free spectral
range at frequency ωl0 .

By using coupled mode theory/modal expansion method, one can derive a set of equations for the complex
amplitudes of resonator modes [8]:

dAl

dt
= −1

2∆ωlAl + 1
2∆ωlFle

i(Ω0−ωl)tδ(l − l0) − ig0
∑

lm,ln,lp

Alm
A∗

ln
Alp

e[i(ωlm −ωln +ωlp −ωl)t]

×Λlmlnlp

l δ(lm − ln + lp − l). (7)

In this equation, Al is the complex amplitude of the l-th mode. The mode fields have been normalized such
that Al is unitless and equals the photon number in mode l. ∆ωl = ωl/Q0 is the linewidth of the mode l,
which is inversely proportional to the loaded quality factor Q0. Note that we have assumed all the modes
to have the same loaded quality factor. F0 is the amplitude of the external excitation, and Ω0 denotes the
angular frequency of the pumping light. δ(x) is the Kronecker function that takes 1 at x = 0 and 0 elsewhere.
The four-wave mixing gain g0 = n2cℏω2

l0
/n2

0V0, where ℏ is reduced Planck’s constant, n2 is the Kerr coefficient
at l = l0, and V0 is the effective mode volume. Note that g0 corresponds to the nonlinear frequency shift of
the pumped mode when there is one photon in that mode. Λlmlnlp

l represents the variation of nonlinear gain
with mode number, which comes from variations in the mode overlap and the Kerr coefficient.

If we only consider the modes with an index around l0, then the variation of four-wave mixing gain with
mode index becomes negligible, and we have Λlmlnlp

l ≊ 1. This approximation doesn’t apply to the case
where the frequency spectrum approaches or surpasses an octave of bandwidth. In this scenario, one must
keep the higher-order Talor expansion terms of Λlmlnlp

l . To the lowest-order approximation, we have

Λlmlnlp

l = 1 + ηl(l − l0) + ηlm
(lm − l0) + ηln

(ln − l0) + ηlp
(lp − l0), (8)

where ηl = ∂Λ/∂l is evaluated at l = lm = ln = lp = l0. Other coefficients ηlm , ηln , and ηlp are defined in a
similar way.

Since the mode overlap reaches a maximum at l = lm = ln = lp = l0, these first-order contributions will be
dominated by variations of the Kerr coefficient due to changes in the mode volume.

By the definition of mode amplitudes Al, we can establish a relation between these amplitudes and the
envelope defined in the real space A = A(θ, t):

A(θ, t) =
∑

l

Al(t) exp[i(ωl − ωl0)t− i(l − l0)θ], (9)
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where θ ∈ [−π, π] is the azimuthal angle along the circumference. Note that the envelope A(θ, t) is defined in
a coordinate system that oscillates in time at angular frequency ωl0 and in space with a wavenumber l0. This
choice of coordinate system will simplify the spatiotemporal dynamic equation for A(θ, t).

By differentiating two sides of Eq. 9 with respect to t and θ, we obtain

∂A

∂t
=

∑
l

[dAl

dt
+ i(ωl − ωl0)Al]e[i(ωl−ωl0 )t−i(l−l0)θ], (10)

as well as

in
∂nA

∂θn
=

∑
l

(l − l0)nAle
[i(ωl−ωl0 )t−i(l−l0)θ]. (11)

If we make the approximation that ∆ωl = ∆ωl0 and substitute Eqs. 7, 8, and 11 into Eq. 10, then we obtain

∂A

∂t
= −1

2∆ωl0A− ig0|A|2A+ 1
2∆ωl0F0e

iσt +
N∑

n=1
in+1 ζn

n!
∂nA

∂θn

+g0[ηl
∂

∂θ
(|A|2A) + 2ηlm

|A|2 ∂A
∂θ

− ηln
A2 ∂A

∗

∂θ
], (12)

where σ = Ω0 −ωl0 denotes the detuning between the laser and the pumped mode. It’s worthwhile mentioning
that Eq. 12 incorporates the frequency dependency of nonlinearity but neglects that of absorption.

We can greatly simplify Eq. 12 by transforming the coordinate system by A → A exp(iσt) and θ →
θ + ζ1tmod[2π] and neglecting the frequency dependency of nonlinearity by Λlmlnlp

l ≊ 1. The consequence of
these transformations and approximation is a variant of the LLE regarding A(θ, t):

∂A

∂t
= −1

2∆ωl0A− iσA+ 1
2∆ωl0F0 − ig0|A|2A− i

ζ2

2
∂2A

∂θ2 . (LLE, 13)

Eq. 13 is the well known LLE that captures soliton formation in an optical microresonator. This LLE with
periodic boundary condition is equivalent to the modal expansion equations as long as higher-order dispersion
as well as the frequency dependency of ∆ωl and Λlmlnlp

l in Eq. 7 can be neglected. Additionally, Eq. 13 can
be recast to the normalized form of LLE:

∂ψ

∂τ
= −(1 + iα)ψ + i|ψ|2ψ − i

β

2
∂2ψ

∂θ2 + F, (normalized LLE, 14)

where the field envelope has been rescaled by ψ = (2g0/∆ωl0)1/2A∗ and the time has been rescaled so
that τ = ∆ωl0t/2. The dimensionless parameters of this normalized equation are the frequency detuning
α = −2σ/∆ωl0 , the dispersion β = −2ζ2/∆ωl0 , and the external pump F = (2g0/∆ωl0)1/2F ∗

0 .

Reference

1. https://en.wikipedia.org/wiki/Kerr_effect

5



2. Hasegawa, A., & Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive
dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 23(3), 142-144.

3. Hasegawa, A., & Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive
dielectric fibers. II. Normal dispersion. Applied Physics Letters, 23(4), 171-172.

4. Del’Haye, P., Schliesser, A., Arcizet, O., Wilken, T., Holzwarth, R., & Kippenberg, T. J. (2007). Optical
frequency comb generation from a monolithic microresonator. Nature, 450(7173), 1214-1217.

5. Herr, T., Gorodetsky, M. L., & Kippenberg, T. J. (2016). Dissipative Kerr solitons in optical microres-
onators. Nonlinear optical cavity dynamics: from microresonators to fiber lasers, 129-162.

6. https://en.wikipedia.org/wiki/Supercontinuum
7. Chembo, Y. K., & Menyuk, C. R. (2013). Spatiotemporal Lugiato-Lefever formalism for Kerr-comb

generation in whispering-gallery-mode resonators. Physical Review A, 87(5), 053852.
8. Chembo, Y. K., & Yu, N. (2010). Modal expansion approach to optical-frequency-comb generation

with monolithic whispering-gallery-mode resonators. Physical Review A, 82(3), 033801.

6


	Note on Kerr Solitons
	Table of Contents
	Introduction to Kerr Nonlinearity and Solitons
	Fiber Solitons
	Bright solitons
	Dark solitons

	Dissipative Kerr Solitons in Optical Microresonators
	Lugiato-Lefever Formalism

	Reference


