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Introduction

Lasers with narrow linewidths are essential for a variety of applications, such as optical atomic clocks,
spectroscopy, and light detection and ranging (LIDAR). To accurately determine the linewidths of these lasers,
it is necessary to measure their noise spectrum with high precision. In this note, we present a correlated
self-heterodyne (COSH) setup capable of detecting frequency noise as low as 0.01 Hz2/Hz [1]. We provide a
detailed explanation of the signal processing theory behind this scheme, along with annotations for the released
code used to calculate the laser noise spectrum [2]. This setup meets the requirements for characterizing the
linewidth of cutting-edge semiconductor lasers and facilitates the development of ultra-low-noise lasers.

Measurement Setup

The COSH setup is depicted in the figure below [1]. The optical output of the laser under test is split into
two beams by a three-port acousto-optic modulator (AOM). One beam maintains the original laser frequency
(unshifted), while the other undergoes a frequency shift of 55 MHz (shifted). The unshifted beam passes
through a 1-km-long fiber delay line and is then combined with the shifted beam at a 50:50 fiber coupler,
creating a modified Mach-Zehnder interferometer (MZI). Before the interference, the polarization of the
shifted beam is adjusted to match that of the unshifted beam, maximizing the intensity of the beating note
at the MZI output and optimizing the measurement sensitivity of the setup. The optical power difference
between the two output ports of the modified MZI is detected by two balanced photodetectors (BPDs), each
consuming half of the MZI’s output power. The use of two BPDs is crucial for calculating cross-correlation
and eliminating the contribution of independent BPD technical noise to the measured noise spectrum. The
photocurrents are measured and recorded using a two-channel oscilloscope for further processing.

During data processing, the measured beating signal is subjected to a Hilbert transform (HT) and a fast
Fourier transform (FFT). The Hilbert transform extracts the instantaneous phase of the beating signal, and
the time-derivative of this instantaneous phase represents the instantaneous frequency. The Fourier transform
of the instantaneous frequency yields the frequency noise power spectrum density (PSD) of the beating signal.
Subsequently, the cross-correlation of the beating signals is calculated by multiplying the Fourier coefficients
of the two channels. Finally, the cross-correlation of the beating signals is amplified by a processing gain
G(f), which compensates for the filtering effect of the modified MZI. This compensation suppresses the
oscillating behaviors in the reconstructed noise spectrum, resulting in a more accurate representation of the
laser’s frequency noise characteristics.
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Figure 1: Cross-correlation self-heterodyne measurement setup [1].

Theoretical Derivation

Processing gain

In this section, we aim to determine the processing gain, which is a frequency-dependent signal gain
that compensates for the modified MZI’s frequency-dependent sensitivity when processing the beat signal.
Mathematically, our goal is to find a factor G(f) such that Sν(f) = G(f)Sν(τ)(f), where Sν(f) and Sν(τ)(f)
represent the frequency noise power spectral densities (PSDs) of the input laser and the beating signal,
respectively. We will derive the relationship between the frequency noise spectra of the laser and beating
signals, leading to an analytical expression for the processing gain.

Let ϕ(t) denote the instantaneous phase of the input laser, and ν(t) := ϕ̇(t)/2π be the corresponding
instantaneous frequency. According to the Wiener-Khinchin theorem, the PSD and auto-correlation function
of ν(t) form a Fourier-transform pair [1,3]:

Sν(f) =
∫ ∞

−∞
⟨ν(0)ν(τ)⟩e2πifτ dτ. (1)

Here, ⟨ν(0)ν(τ)⟩ represents the ensemble average of ν(0)ν(τ) and is the auto-correlation function of ν(τ). In
the following section, we will establish a connection between the frequency noise PSD of the input laser and
the beating output of the modified MZI.

In the measurement setup described in Section: Measurement Setup, the beating output of the modified MZI
has an instantaneous frequency of ν(τ) = ν(t) − ν(t − τ) − fc, where fc = 55 MHz represents the frequency
of the AOM driving signal. It is crucial to note that ν(τ) is the frequency of the photocurrent oscillation
detected at the balanced photodetectors (BPDs), rather than the modulation frequency of the optical output
of the modified MZI.

Applying the Wiener-Khinchin theorem, the frequency noise PSD of the beating signal can be expressed as:

Sν(τ)(f) =
∫ ∞

−∞
⟨[ν(0) − ν(−τ) − fc][ν(τ ′) − ν(τ ′ − τ) − fc]⟩e2πifτ ′

dτ ′. (2)
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In this equation, all terms proportional to fc sum to zero because ⟨ν(0)⟩ = ⟨ν(−τ)⟩ = ⟨(τ ′)⟩ = ⟨ν(τ ′ − τ)⟩.
Moreover, the term quadratically proportional to f2

c is f2
c δ(f), which contributes a DC component to the

PSD of the beating signal and is not relevant to our noise spectrum analysis. By omitting these terms,
Equation 2 can be simplified to a more concise form:

Sν(τ)(f) =
∫ ∞

−∞
⟨[ν(0) − ν(−τ)][ν(τ ′) − ν(τ ′ − τ)]⟩e2πifτ ′

dτ ′. (3)

By employing the Wiener-Khinchin theorem and time translation invariance of ensemble averaging, we obtain:

Sν(τ)(f) =
∫ ∞

−∞
⟨ν(0)ν(τ ′) + ν(−τ)ν(τ ′ − τ) − ν(0)ν(τ ′ − τ) − ν(−τ)ν(τ ′)⟩e2πifτ ′

dτ ′

= 2Sν(f) − e2πifτ

∫ ∞

−∞
⟨ν(0)ν(τ ′ − τ)⟩e2πif(τ ′−τ)dτ ′ − e−2πifτ

∫ ∞

−∞
⟨ν(−τ)ν(τ ′)⟩e2πif(τ ′+τ)dτ ′

= (2 − exp(2πifτ) − exp(−2πifτ))Sν(f)
= 4 sin2(πfτ)Sν(f). (4)

The equation indicates that the frequency noise PSD of the beating signal differs from that of the input laser
by a modulation factor of 4 sin2(πfτ). Consequently, once we have obtained the frequency noise PSD of the
beating signal, we can recover the PSD of the input laser by applying an amplifying factor, which is the
processing gain we are seeking. This processing gain can be expressed as:

G(f) = 1
4 sin2(πfτ)

, (5)

By multiplying the frequency noise PSD of the beating signal by this processing gain, we can accurately
determine the frequency noise characteristics of the input laser, compensating for the modulation introduced
by the modified MZI in the measurement setup.

Hilbert transform

The correlated self-heterodyne (COSH) scheme utilizes the Hilbert transform to extract the instantaneous
phase of the beating signal. This section explains the underlying principles. Technically, only complex-valued
signals have a well-defined phase, while real-valued signals need to be transformed into a complex-valued
form, known as an analytical representation, to define their phase. The Hilbert transform plays a crucial role
in constructing the analytical representation of a real-valued signal.

For a given real-valued signal u(t), the Hilbert transform is defined as the convolution of u(t) with the
function h(t) = 1/πt [4]:

H(u)(t) = 1
π

p.v.

∫ ∞

−∞

u(τ)
t − τ

dτ. (6)

Using the Hilbert transform, we can construct a complex-valued signal ua(t) = u(t) + iH(u)(t). This
complex-valued signal possesses two important properties:

1. The real part of ua(t) is u(t);
2. ua(t) has no Fourier components with negative frequencies (proof can be found in [5]).
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Due to these properties, ua(t) is called an analytic representation of the original real-valued signal u(t). It can
be shown that for any real-valued signal, there exists one and only one analytic representation. The imaginary
part of this unique analytical representation is related to the real part through the Hilbert transform.

The instantaneous phase ϕ(t) of a real-valued signal u(t) is defined as the phase of its analytic representation
ua(t) = u(t) + iH(u)(t) [5]. Mathematically,

ϕ(t) = arg[ua(t)] = arctan[H(u)(t)
u(t) ]. (7)

This equation indicates that the instantaneous phase of a signal can be extracted based on its Hilbert
transform, providing an integral tool for analyzing the noise spectrum of real-valued signals in the COSH
scheme.

Gating and window function

In the data processing stage, the time series of instantaneous frequency ν(t), extracted using the Hilbert
transform, is segmented before applying the Fourier transform. The first and last 40 ms of the time series
are discarded due to signal distortion induced by the Hilbert transform [1]. The remaining data points are
divided into non-overlapping segments, each with a time length of τ , which corresponds to the optical delay
employed in the modified MZI. The finite length of signal τ is associated with a resolution bandwidth (RBW)
of 1/τ . Frequency components in the laser noise spectrum with a spectral gap lower than the resolution
bandwidth cannot be distinguished.

These signal segments are then processed to calculate the frequency noise PSD of the beating signal, following
the typical windowing method [6]. It is important to note that segmenting should not be performed by a
straightforward cutoff of the signal within a finite-length time window. Instead, the signal ν(t) is multiplied
by a smooth window function w(t) to extract a specified interval of the signal νgate(t). This process is known
as gating and is mathematically expressed as:

νgate(t) = w(t)ν(t). (8)

If the signal distortion induced by gating is negligible, the frequency noise PSD of the beating signal Sν(τ)(f)
can be estimated from the Fourier coefficients of the gated signal ν̂gated(τ, f). To this end, note that for the
beating signal [7]:

Sν(τ)(f) = lim
T →∞

1
T

∫ T/2

−T/2
|ν(τ, t)|2dt. (9)

Assuming that the windowing function w(t) is nearly unity within a time frame [−T0/2, T0/2] and close to
zero outside this frame, we have T0 ≈

∫ ∞
−∞ w(t)2dt. It follows that:
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Sν(τ)(f) ≈ 1
T0

∫ T0/2

−T0/2
|ν(τ, t)|2dt

≈ 1∫ ∞
−∞ w(t)2

∫ T0/2

−T0/2
|ν(τ, t)|2w(t)2dt

≈ 1∫ ∞
−∞ w(t)2

∫ ∞

−∞
|ν(τ, t)|2w(t)2dt

= 1∫ ∞
−∞ w(t)2

∫ ∞

−∞
|νgated(τ, t)|2dt

=
∫ ∞

−∞ |ν̂gated(τ, f)|2df∫ ∞
−∞ w(t)2dt

, (10)

where the last equation is derived from Parseval’s theorem [8], and ν̂gated(τ, f) is defined as:

ν̂gated(τ, f) =
∫ ∞

−∞
ν(τ, t)w(t) exp(2πift)dt. (11)

Equation 10 allows for estimating the frequency noise PSD of the beating signal from the Fourier coefficients
of the segmented signals, providing a practical approach to characterize the noise properties of the laser under
test.

Cross-correlation function

In this section, we explain (1) how to calculate the cross-correlation function based on measurement outcomes
and (2) why the calculated cross-correlation function can serve as an estimate of the frequency noise PSD of
the beating signal. For simplicity, let’s consider an infinitely long signal without segmenting.

We assume that the instantaneous phases of the beating signals detected at the two BPDs are:

ϕ1(t) = ϕ(t) + ϕBPD,1(t),
ϕ2(t) = ϕ(t) + ϕBPD,2(t), (12)

where ϕ is the instantaneous phase of the photocurrent at the BPDs without technical noise, and ϕBPD,1/2
denotes the contribution of technical BPD noise. The phase signal can be transformed into a frequency signal
by:

ν1(τ, t) = ϕ̇1(t)
2π

= ν(τ, t) + νBPD,1(t),

ν2(τ, t) = ϕ̇2(t)
2π

= ν(τ, t) + νBPD,2(t). (13)

The cross-correlation function of these two frequency signals, expressed in the frequency domain, is:

r12(τ, f) =
∫ ∞

−∞
⟨ν1(τ, 0)ν2(τ, t)⟩ exp(2πift)dt. (14)
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Assuming that ν(τ, t), νBPD,1, and νBPD,2 are independent random variables and ⟨νBPD,1/2⟩ = 0, we have:

r12(τ, f) =
∫ ∞

−∞
⟨ν(τ, 0)ν(τ, t)⟩ exp(2πift)dt = Sν(τ)(f). (15)

In the last equation, we have employed the Wiener-Khinchin theorem. Equation 15 indicates that the
frequency noise PSD of the beating signal can be calculated as the cross-correlation function of the frequency
noise measured at the two oscilloscope channels. The contribution of independent technical BPD noise
is eliminated when performing ensemble averaging for the cross-correlation function, demonstrating the
robustness of the COSH scheme against technical PD noise.

Next, we establish a relation between the cross-correlation function r12(τ, f) and the product of the Fourier
coefficients evaluated at the two channels. Note that the ensemble average of an infinitely long random signal
with time-translation-invariant statistics at a certain moment is equal to its average value across the infinite
time frame. Therefore, we can transform Eq. 14 to:

r12(τ, f) =
∫ ∞

−∞

∫ ∞

−∞
ν1(τ, t′)ν2(τ, t + t′) exp(2πift)dtdt′

=
∫ ∞

−∞

∫ ∞

−∞
ν1(τ, t′)ν2(τ, t′) exp(2πif(t − t′))dtdt′ (t + t′ → t)

= ν̂1(τ, f)ν̂∗
2 (τ, f). (16)

This equation suggests that the cross-correlation function can be calculated as the product of the Fourier
coefficients of the frequency noise measured at the two oscilloscope channels. Equation 16 can be readily
adapted for finite-length segmented signals ν1/2,gated(t) = w(t)ν1/2(t) as:

r12,gated(τ, f) ≈ ν̂1(τ, f)ν̂∗
2 (τ, f)∫ ∞

−∞ w(τ ′)2dτ ′ ,

where the denominator on the right-hand side of the equation comes from the approximation of the ensemble
average of a signal at a given moment by the average value within a finite-length time frame.
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