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Introduction

In integrated photonics, resonators are usually formed by looped waveguides known as ‘ring resonators.’ Ring
resonators offer favorable compactness and highly wavelength-selective transmission characteristics. For
these reasons, ring resonators have become fundamental building blocks in integrated photonics, particularly
in applications such as filters, sensors, and modulators, to name a few [1]. In this note, we will introduce
the basic properties of ring resonators and briefly discuss their connection to materials and the fabrication
process.

Notations
The intrinsic (internal) Q factor of a resonator describes the lifetime of a photon in an isolated resonator in
unit of the oscillation period of EM wave and with a coefficient of 2π. That is, the intrinsic Q factor of a
resonator reads [2]:

Qint = 2πneff

αiλ

Note that α incorporates two types of optical loss: propagation loss in straight waveguide sections or
waveguides with constant curvature, and bending loss occurring at positions where the curvature of the (ring)
resonator changes. The latter can be reduced by using Euler-spiral waveguide bending to form the resonator,
which avoids a sharp change in the waveguide curvature.

The external Q factor quantifies the impact of waveguide coupler on the lifetime of photons in the resonator.
There are two factors that contribute to the external Q factor, including power out-coupling and excess
coupling loss (due to nonadiabatic mode conversion/scattering/mode leakage/radiation) at the coupler. The
external Q factor is formulated as follow:

Qext = 2πneff

− ln(1 − γ) − ln(1 − κ)
L

λ
≈ 2πneffL

λ
[κ + γ]−1

The loaded Q factor is a measure of photon lifetime in a resonator coupled to a bus waveguide. It is determined
by the photon loss rate both in the resonator and at the coupler and therefore follows the equation below
[3,4]:

Qload = Qint + Qext = 2πneffL

λ
[κ + αiL + γ]−1

The loaded Q factor can be easily extracted from measured transmittance spectrum of the resonator using
the equation below [1]:

Qload = λres

FWHM
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where λres is a resonance frequency, and FWHM is the full width half maximum of the corresponding resonant
peak in the transmittnce spectrum. This expression of Qload implies that, from an experimental perspective,
the loaded Q factor is a measure of the width of a resonant peak. The narrower the resonance peak, the
larger the loaded Q factor. On the other hand, we observe that Qload increases as the optical loss in the
resonator decreases. Therefore, we can conclude with an important insight: the finite width of resonant peaks
is due to the presence of optical loss in the resonator.

How to Improve Quality Factor

• To improve the intrinsic quality factor of a resonator, we need to reduce its optical losses, including
material absorption, excess coupling loss, and cavity bending loss.

• To reduce material absorption, one can use large bandgap materials such as silicon nitride and lithium
niobate instead of those with a smaller bandgap like silicon.

• To reduce excess coupling loss, one can employ a weakly tapered gap directional coupler, where the
resonator is evanescently coupled to a waveguide, and the gap in between changes adiabatically.

• To reduce cavity bending loss, one can incorporate waveguide bends in the resonator using Euler-spiral
bending waveguides, where the curvature changes adiabatically, thus suppressing optical loss.

Transmittance of Resonator

Resonance

The transmittance spectra of a ring resonator is comprised of a series of equidistant dips, namely absorption
peaks of the resonator. These transmittance dips/absorption peaks are known as resonances. Each resonance
is associated with energy building up in the resonator in the form of standing wave, due to the frequency
matching between the excitation and an eigenmode of the resonator. Therefore, these resonances locate at:

λm = neffL

m
, m = 1, 2, 3...

Free Spectral Range

The spectral distance, or difference in frequency/wavelength between these resonances is defined as the free
spectral range (FSR) of the resonator. FSR determines the spectral range free of resonance and is dependent
of wavelength. For FSR around the m-th resonant frequency, it can be calculated with the equation below:

FSR = neff,1L

m
− neff,2L

m + 1 ≈ neff,1L

m2 + ∆neffL

m
.

where neff,1 and neff,2 represent the effective index of the resonator at the m-th and (m+1)-th resonant
frequencies (denoted as λm and λm+1), respectivley. ∆neff = neff,1 − neff,2 represents their difference. We
can rewrite the expression of FSR as follows:

FSR = λ2
m

neff,1L
+ FSR ∆neff

FSR
L

m

= λ2
m

neff,1L
+ FSR dneff

dλ

λm

neff,1
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Solving this equation, we obtain the expression of FSR as follows [1]:

FSR = λ2
m

L
/(neff,1 − λm

dneff

dλ
) = λ2

m

ngL

Where ng = neff − λmdneff/dλ is the group index of the resonator at λm, which has taken into account the
dispersion effect. The corresponding group velocity in the resonator is vg = c/ng. Note that, when the
dispersion effect is ignorable, the group index will be equal to effective index.

Coupling Regimes

The optical transmission characteristics of a waveguide coupled to a ring resonator may vary significantly with
their coupling strength. In fact, there are three coupling regimes for the coupled resonator, distinguished in
the relative size of the power coupling ratio κ (1) and the single-trip optical loss rate l = 1−exp(−αiL)(1−γ).

Over-coupling Regime

The resonator is in the over-coupling regime if κ > l. In this regime, the coupling strength between the
waveguide and the resonator is larger than the optical loss rate in the resonator, and the out-coupling of the
resonator becomes the dominant factor contributing to the finite resonance width. The over-coupling regime
is usually employed in applications such as modulators and detectors.

Under-coupling Regime

The resonator is in the under-coupling regime if κ < l. In this regime, the main source of optical loss is the
internal cavity loss, rather than the out-coupling or insertion loss. In large band gap materials such as silicon
nitride, the internal cavity loss could be low (0.1 dB/cm), enabling a high Q factor and narrow resonant
peaks. Since a narrow resonance is widely used in high-resolution measurements, the under-coupling regime
becomes an ideal choice for applications such as sensors.

Critical-coupling Regime

The resonator is in the critical-coupling regime if κ = l. The most remarkable feature of this regime is
that the transmittance of the bus waveguide at resonance is minimized, making it a favorable regime for
band-pass/stop filters.
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