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Introduction

Ring resonators are a fundamental component in integrated photonic circuits, serving as compact and narrow-
band optical filters used in lasers, modulators, and (de-)multiplexers. There are two common configurations
for how ring resonators interact with bus waveguides: the all-pass ring and add-drop ring configurations,
illustrated in Figure 1. In the all-pass ring setup, the bus waveguide is evanescently coupled to the ring
resonator, selectively tapping and dissipating pump light at resonant frequencies while allowing other optical
signals to pass through with minimal loss. On the other hand, the add-drop ring configuration transfers
pump light at resonant frequencies from the lower waveguide to the upper waveguide, avoiding dissipation
within the ring. This note provides a theoretical analysis of the transmission properties of the all-pass ring
using coupled mode theory.

Figure 1: (Left) All-pass and (Right) aadd-drop ring resonator [1].

Coupled Mode Theory of Ring Resonator

Transmittance of all-pass ring

In the all-pass ring configuration shown in Figure 1 (left), we define the roundtrip amplitude attenuation
as a and the amplitude self-coupling coefficient as r. Specifically, light circulating the ring over one cycle
experiences an intensity attenuation of a2 = e−αL due to intrinsic loss (such as scattering and radiation),
where α is the attenuation coefficient and L is the ring circumference. Moreover, the power coupling ratio
between the ring and the bus waveguide is given by |k|2 = 1 − |r|2, where r = cos(κl) and k = −j sin(κl)
represent the amplitude self- and cross-coupling coefficients. Here, κ and l denote the coupling strength and
length of the coupling region, respectively. It is important to note that there is a phase difference of π/2
between k and $r; the derivation of this phase factor can be found in section 4.1 of the reference [1].

The amplitude of the transmitted field is directly proportional to the input field amplitude, with the ratio
given by reference [1]:
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Epass

Einput
= r + k2(ae−iϕ + a2re−i2ϕ + a3r2e−i3ϕ + ...)

= r − ae−iϕ

1 − are−iϕ
. (1)

where ϕ = βL is the roundtrip phase shift, with beta the propagation constant of the ring.

By taking the squared absoute value for both sides of Equation 1, we obtain the transmittance of the all-pass
ring as follows:

T = | Epass

Einput
|2 = a2 − 2ar cos ϕ + r2

1 − 2ar cos ϕ + (ar)2 . (2)

To make the frequency dependence of the all-pass ring transmittance clearer, we recast Equation 2 into

T = 1 − (1 − a2)(1 − r2)
1 − 2ar cos ϕ + (ar)2 . (3)

Since 0 < a, r < 1, the all-pass ring transmittance exhibits local minima at ϕ = 2Nπ (N = 1, 2, ...). These
minima correspond to dips in the transmittance spectrum occurring at frequencies f = N ×c/neffL, where neff
represents the mode effective index. These dips coincide with the resonant frequencies of the ring resonator
and are commonly referred to as resonance dips.

The free spectral range (FSR) of the ring resonator around the wavelength λ, which is defined as the spectral
separation between the two nearest resonant wavelengths, is given by

FSRf = c

ngL
.

Here, ng = neff − λdneff/dλ denotes the group index of the ring at the wavelength λ.

Lorentzian line shape and Q factor

The fineness is determined by the ratio of the FSR to the FWHM of the resonance dip, also known as
the resonance width. When the ring exhibits a fineness significantly greater than 1, the resonance width
corresponds to a minimal variation in the roundtrip phase shift ϕ compared to 2π. Under these conditions,
the shape of the resonance dip can be approximated by a Taylor expansion of the all-pass ring transmittance
around the resonant frequency ω:

T = 1 − (1 − a2)(1 − r2)
(1 − ar)2 + ar(∆ωtrt)2

= 1 − h

1 + ( ∆ω
w/2 )2

, (4)

where ∆ω represents the detuning from the resonant frequency, trt = ngL/c denotes the roundtrip time,
h = (1−a2)(1−r2)

(1−ar)2 denotes the resonance dip depth, w = 2 1−ar√
ar

c
ngL stands for the dip FWHM, and ng =

neff + f dneff
df = neff − λ dneff

dλ is the group index. The minimum transmittance is Tmin = T (∆ω = 0) = (r−a)2

(1−ra)2 .
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It is important to note that a Taylor expansion was applied around a resonant frequency. As the frequency of
maximum transmittance for an all-pass ring is situated outside any resonant dip, away from any resonant
frequency, the Taylor expansion cannot be utilized for calculating the maximum transmittance. Instead,
Equation 3 should be employed to determine the maximum transmittance by setting ϕ = (2N + 1)π for some
non-negative integer N . The resulting transmittance is Tmax = (r+a)2

(1+ra)2 [2]. In summary, the FWHM and
extinction ratio for a resonance dip of an all-pass ring can be obtained as follows:

FWHMω = w = 21 − ar√
ar

c

ngL

ER = Tmax

Tmin
= (r + a)2(1 − ra)2

(1 + ra)2(r − a)2 . (5)

Importantly, 1 − T = h/[1 + (∆ω/(w/2))2] describes a standard Lorentzian line shape with a height of h and
a full width at half maximum (FWHM) of w. Through Fourier transform, it can be demonstrated that this
frequency-domain Lorentzian resonance dip corresponds to an exponentially decaying time-domain signal
s(t) ∝ exp(−wt/2 − iωt), depicting a typical damped oscillation. This time-domain signal actually illustrates
the evolution of the intracavity optical field amplitude, where the intracavity power P ∝ |s(t)|2 = exp(−wt).
Consequently, the FWHM of the resonance dip in the transmittance spectrum (power transmission versus
angular frequency) is equivalent to the intracavity power decaying rate | 1

P
dP
dt | = w.

In general terms, the attenuation rate of a damped oscillation is quantified by the Q factor, defined as
Q = ω/w = 2πτ/T , where w signifies the power attenuation rate, ω represents the oscillation angular
frequency, τ = 1/w denotes the decay time, and T = 2π/ω indicates the oscillation period. For a ring
resonator coupled (or loaded) to a bus waveguide, both the intrinsic loss a and the coupling loss r contribute
to ω and hence determine Q. In this scenario, the Q factor is termed as the loaded Q factor. As the coupling
strength between the ring and the bus waveguide decreases, the loaded Q factor of the ring will approach a
value determined by the intrinsic loss. This specific value is called the intrinsic Q factor, which is computed
by assuming no coupling loss (r = 1).
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