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The preliminary knowledge for the note is provided in Note on Microring Resonator (Part II).

Introduction

In this note, we present a derivation of the coupled mode equation for an all-pass ring resonator (refer to
Figure 1). We include intracavity backscattering in our theory and analyze the resulting splitting of resonance
dip in the transmission spectrum.

Figure 1: Left: all-pass ring; Right: add-drop ring.

Coupled Mode Theory

An all-pass ring is a ring resonator evanescently coupled to a nearby bus waveguide. Here, we denote the
input optical field amplitude in the bus waveguide as sin and the output field amplitude as sout. We use a1
and a2 to represent the amplitudes of a counter-clockwise mode and a clockwise mode, respectively. These
modes are degenerate when there is no coupling between them, and their resonant frequencies are close to
the laser pump frequency: ωc ≈ ω. The total power decay rate of the ring resonator is γT , which is the sum
of the coupling-induced power decay rate γex and the intrinsic loss (absorption, radiation, and scattering)
induced power decay rate γin, given by γT = γin + γex. The out-coupling decay rate γex depends on the ring
circumference and coupling ratio, and this relation will be explained in detail later.

Derivation of coupled mode equation

We use a phenomenological approach to derive the coupled mode equation for a1 and a2. In the absence of
pump light, coupling loss, and backward mode coupling, each mode will oscillate at its resonant frequency and
exhibits an exponential energy decay. Thus, the evolution of mode coefficients follows a1,2 ∝ exp(−iωc−γin/2).
The corresponding equation of motion should be da1,2/dt = −(iωc + γin/2)a1,2. Taking into account the
backward mode coupling and input/output of the ring, the complete coupled mode equation takes the
following form:
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da1

dt
= −(iωc + γT

2 )a1 + g12a2 + κsin,

da2

dt
= −(iωc + γT

2 )a2 + g21a1. (1)

Here, g12, g21, and κ are coefficients that need to be determined.

First, we determine g12 and g21. In the absence of coupling loss and intrinsic loss in the ring γT = γex = γin = 0,
the intracavity power should remain constant: |a1|2 + |a2|2 = C. We express the coupled mode equation in
matrix form da/dt = iHa, where H must be a Hermitian matrix to ensure energy conservation. Hence, the
matrix elements must satisfy H12 = H∗

21, namely −ig12 = (−ig21)∗. For simplicity, we assume both −ig12 and
−ig21 are real numbers, which means −ig12 = −ig21 = g/2 ∈ R. Therefore, we can write g12 = g21 = ig/2,
where g is a real number representing the power coupling rate between the clockwise and counter-clockwise
modes.

Next, we consider the out-coupling coefficient κ. Assuming the cavity-laser detuning is sufficiently small and
there is no mode coupling (roundtrip phase shift is around a multiple of 2π and g = 0) for simplicity, the
evolution of the intracavity field is solely determined by the coupling loss and the amplitude of the pump
field. It is essential to note that coupling loss occurs only when light passes through the coupler, whereas
intrinsic loss occurs throughout the ring. This distinction complicates our system modeling. However, we can
apply the mean-field approximation, replacing the position-dependent coupling loss with a mean, uniformly
distributed loss.

In each roundtrip time interval τrt = ngL/c, light in the ring resonator passes the coupler once. This results
in the following change in the mode coefficient:

∆a1 = i
√

θsin +
√

1 − θe−αL/2a1 − a1. (2)

Here, θ represents the power coupling ratio and α is the power attenuation coefficient. To simplify this
expression, we apply the mean-field approximation by introducing the substitution ∆a1 = da1

dt τrt. This
substitution assumes that the coupling loss causes a continuous change in the mode coefficient a1, implying
that the roundtrip coupling loss is averaged over the time interval τrt. With this mean-field approximation
substitution, Equation 2 transforms to:

da1

dt
= − θc

2ngL
a1 − αc

2ng
a1 + i

√
θc

ngL
sin. (3)

In Equation 3, the first term represents the coupling loss, the second term denotes the intrinsic loss, and the
third term corresponds to the gain. In deriving this equation, we have assumed the roundtrip change in a is
small and used the one-order approximation that

√
1 − θe−αL/2 ≈ 1 − θ

2 − αL
2 . By comparing Equations 1

and 3, we can derive:

γin = αc

ng
, γex = θc

ngL
, κ = i

√
θc

ngL
. (4)

The transmitted optical field in the bus waveguide is given by:

sout =
√

1 − θsin + i
√

θa ≈ sin + i
√

θa, (5)

This approximation holds when the roundtrip power coupling ratio θ ≪ 1.
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Coupled mode equation with mode coupling

In this section, we summarize the coupled mode equation derived earlier. For an all-pass ring resonator with
both counter-clockwise and clockwise modes, the coupled mode equations for the mode coefficients a1 and a2
are given by [1]:

da1

dt
= −(iωc + γex + γin

2 )a1 + i
g

2a2 + i
√

γexs′
in,

da2

dt
= −(iωc + γex + γin

2 )a2 + i
g

2a1,

s′
out = s′

in + i
√

γexa1. (6)

In these equations:

• ωc is the mode resonant frequency (in the absence of backward mode coupling).
• s′

in =
√

1/τrtsin and s′out =
√

1/τrtsout are the scaled amplitudes of the input and transmitted optical
fields, respectively. Here, τrt = ngL/c represents the roundtrip delay.

• γin = αc/ng is the intrinsic decay rate, where α is the intensity attenuation coefficient.
• γex = θc/ngL is the coupling decay rate, with θ being the roundtrip power coupling ratio.
• g denotes the power coupling rate between the counter-clockwise and clockwise modes.

Resonance line shape with mode splitting

Here, we derive the steady-state transmission spectrum of an all-pass ring resonator with backscattering.
In the steady state, the mode amplitudes oscillate at the laser frequency ω, therefore da1/dt = −iωa1 and
da2/dt = −iωa2. We denote the total decay rate as γT = γin + γex. From the first two equations in Equation
6, we can derive:

a2 = ig/2
i∆ω + γT /2a1,

a1 = ig/2
i∆ω + γT /2a2 +

i
√

γex

i∆ω + γT /2s′
in, (7)

where ∆ω = ωc − ω is the detuning of the mode resonant frequency from the laser frequency. Substituting
the first equation into the second one, we obtain:

i
√

γexa1 = s′
in × {− γex/2

i(∆ω + g/2) + γT /2 − γex/2
i(∆ω − g/2) + γT /2}. (8)

Next, substituting Equation 8 into the third equation of Equation 6, we find the transmission spectrum of
the all-pass ring:

|s
′
out

s′
in

|2 = |1 − γex/2
i(∆ω − g/2) + γT /2 − γex/2

i(∆ω + g/2) + γT /2 |2. (9)

This expression indicates that the transmission spectrum has two resonance dips located at ω0 + g/2 and
ω0 − g/2, where ω0 is the resonant frequency in the absence of mode coupling. In other words, the coupling
between the counter-clockwise and clockwise modes lifts their degeneracy and results in a mode splitting of g.
This mode splitting can be observed in the transmission spectrum of the all-pass ring if the resonance FWHM
is relatively small γT < g. Otherwise, the doublet resonance dips merge and appear as a single Lorentzian
resonance dip.
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