
Derivation of ring enhancement factor

Author: Di Yu Date: 2025-08-01

This Note serves to derive the ring enhancement factor, or the ratio of intra-cavity power to the input power on the bus waveguide, for an all-pass ring resonator.

Problem description:

Given input power P_{in} , intrinsic and loaded Q factors of the resonator Q_i and Q, calculate the intra-cavity power P_{intra} .

Solution:

The power transmission of the ring at a resonant frequency is given by

$$T_{res} = \frac{(a-r)^2}{(1-ra)^2},$$

where a is roundtrip amplitude transmission coefficient, and r is self-coupling coefficient.

The loaded, intrinsic, and coupling Q factors of the all-pass ring are given by:

$$\begin{split} Q &= \frac{\pi n_g L \sqrt{ra}}{\lambda_{res} (1-ra)} \approx \frac{\pi n_g L}{\lambda_{res} (1-ra)}, \\ Q_i &= \frac{\pi n_g L \sqrt{a}}{\lambda_{res} (1-a)} \approx \frac{\pi n_g L}{\lambda_{res} (1-a)}, \\ Q_c &= \frac{\pi n_g L \sqrt{r}}{\lambda_{res} (1-r)} \approx \frac{\pi n_g L}{\lambda_{res} (1-r)}, \end{split}$$

where we assume the roundtrip attenuation and coupling are weak $(r, a \approx 1)$.

Now the power transmission can be recast into

$$T_{res} = \frac{[(1-r)-(1-a)]^2}{(1-ra)^2} = Q^2 \left(\frac{1}{Q_c} - \frac{1}{Q_i}\right)^2$$

Next, we express P_{intra} as a function of T_{res} . By the conservation of energy, we have:

$$P_{in}(1-T_{res})=P_{diss},$$

Note that

$$\frac{P_{diss}}{f_{res}} = 2\pi \times \frac{\text{intracavity energy}}{Q} = 2\pi \times \frac{P_{intra}}{Q} \times \frac{n_g L}{c}$$

Combine these equations, we have

$$P_{diss} = 2\pi \frac{f_{res}P_{intra}n_{g}L}{Qc} = P_{in}(1 - T_{res}) = P_{in}\left[1 - Q^{2}\left(\frac{1}{Q_{c}} - \frac{1}{Q_{i}}\right)^{2}\right]$$

Which can be simplified into

$$\frac{P_{intra}}{P_{in}} = \frac{Qc}{2\pi n_g L f_{res}} \left[1 - \left(\frac{Q}{Q_c} - \frac{Q}{Q_i} \right)^2 \right]$$

Example usage:

Let Q_c , $Q_i = 50$ M, Q = 25 M, L = 6 mm, $n_g = 1.6$, $f_{res} = 193$ THz, $P_{in} = 1$ mW, we have

$$P_{intra} = 644 \, mW$$

Reference:

- [1] https://en.wikipedia.org/wiki/Q factor
- [2] Bogaerts, Wim, et al. "Silicon microring resonators." Laser & photonics reviews 6.1 (2012): 47-73.