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Introduction

In this note, we have presented a self-contained formulation of waveguide optics. Beginning with the definition
of waveguide modes, we derived the master equation governing their transverse field distributions and showed
that the problem of finding guided modes is equivalent to determining the eigenvectors of a Hermitian
operator—an analogy that closely parallels the formalism of quantum mechanics.

We then introduced an inner product for guided electromagnetic fields and demonstrated that modes associated
with different propagation constants are orthogonal under this definition. Building on this, we constructed an
orthonormal basis of modal fields, which greatly simplifies the representation of arbitrary guided fields and
their associated power flow.

Finally, we derived a practical expression for the power coupling efficiency at the interface between two
waveguides, showing that it can be expressed compactly in terms of the mode overlap between the incident
field and the target guided mode. This expression is widely used in numerical mode solvers and provides
essential insight into mode conversion and coupling phenomena in integrated photonics.

Basics of Waveguide Optics

Derivation of master equation

Electromagnetic (EM) fields in a linear medium can always be written as superpositions of time-harmonic
fields. A single time-harmonic component takes the form

E = E(x, y, z) exp(−iωt), H = H(x, y, z) exp(−iωt).

In the following, E and H refer exclusively to the spatial field amplitudes E(x, y, z) and H(x, y, z).

For these amplitudes, Maxwell’s equations become

∇ × E = iωµ0H
∇ × H = −iϵωE

∇ · (ϵE) = 0
∇ · H = 0 (1a-d)

Taking the curl of the first two equations yields

∇ × (∇ × E) = ω2µ0ϵE

∇ × (1
ϵ

∇ × H) = ω2µ0H

Using the vector identities (f is a scalar field and v denotes a vector field)
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∇ × (∇ × v) = ∇(∇ · v) − ∇2v
∇ × (fv) = (∇f) × v + f∇ × v,

The curl equations may be recast as

∇(∇ · E) − ∇2E = ω2µ0ϵE

− 1
ϵ2 ∇ϵ × (∇ × H) + 1

ϵ
(∇(∇ · H) − ∇2H) = ω2µ0H (2a-b)

Consider now a dielectric waveguide whose permittivity is invariant along the z-axis but may vary in the
transverse xy-plane: ϵ = ϵ(x, y). Guided fields can be written as modal fields with a longitudinal phase factor:

E(x, y, z) = e(x, y) exp(iβz), H(x, y, z) = h(x, y) exp(iβz), (3)

Here, e(x, y) and h(x, y) describe the transverse field distribution, and β is the propagation constant.

Substituting Eq. 3 into the divergence condition ∇ · (ϵE) gives

∇t · (ϵet) + iβϵez = 0, (4)

where ∇t = x̂∂x + ŷ∂y and et = exx̂ + ey ŷ. x̂ and ŷ represent the unit vectors along x- and y-axis, respectively.

Eq. 4, together with Maxwell’s equation Eq. 1a, implies that the full 3D field is completely determined once
et(x, y) and β are known. In the following, our goal is to find an equation for e(x, y) and β.

Substituting Eq. 3 into Eq. 2a, the left side of the equation becomes:

∇(∇ · E) − ∇2E = ∇(∇ · (e exp(iβz))) − ∇2(e exp(iβz))
= ∇(∇t · e exp(iβz) + iβez exp(iβz)) − ∇2

t e exp(iβz) + β2e exp(iβz)
= (∇t + iβẑ)(∇t · e + iβez) exp(iβz) − ∇2

t e exp(iβz) + β2e exp(iβz)

The right side of the equation is:

ω2µ0ϵE = ω2µ0ϵe exp(iβz).

Therefore we arrive in the following equation:

(∇t + iβẑ)(∇t · e + iβez) − ∇2
t e = (ω2µ0ϵ − β2)e. (5)

To solve for et, let’s take the transverse component of Eq. 5 and use Eq. 4 to eliminate ez, yielding

∇t(∇t · e − 1
ϵ

∇t · (ϵet)) − ∇2
t et = (ω2µ0ϵ − β2)et.
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This simplifies to the master equation for waveguide eigenmodes:

(∇2
t + k2

0ϵr)et + ∇t(
1
ϵr

∇tϵr · et) = β2et, (6)

where k0 = ω/c is the wave number in free space, and ϵr = ϵ/ϵ0 is the relative permittivity. This master
equation is the fundamental equation for some electromagnetic field simulation sofware, for example, Lumerical
finite difference eigenmode (FDE) solver.

Phase relations among field components

For a lossless waveguide (real ϵr), Eq. 6 contains no explicit imaginary coefficients. Thus, if et is a solution,
the real and imaginary parts are also solutions. One may therefore choose et to be purely real without loss
of generality.

From Eq. 4, a real et implies that ez is purely imaginary.

The magnetic field components follow similar phase relations. Substituting Eq. 3 into Maxwell’s equation Eq.
1b yields

∇t × ht = −iϵωez ẑ

ẑ × (∇thz − iβht) = iϵωet. (7)

If et is real and ez is purely imaginary, it follows from Eq. 7 that ht is real and hz is purely imaginary.
Commercial eigenmode solver, such as Lumerical’s FDE solver, automatically return modal fields that obey
these phase relations: et, ht ∈ R, ez, hz ∈ iR, if the waveguide is lossless.

Linear Algebra Formulation of Waveguide Optics

Eigenvalue problem formulation

The set of all transverse electric fields that can be expressed as linear combinations of the guided-mode
profiles forms a vector space, V = {v(x, y) =

∑
k cket,k, ck ∈ C}. Each element of V represents a possible

transverse electric-field distribution on a cross-section of the waveguide.

Eq. 6 derived earlier can be interpreted as an eigenvalue problem on this vector space. To make this
explicit, define the linear operator

Θ(v) = (∇2
t + k2

0ϵr)v + ∇t(
1
ϵr

∇tϵr · v).

It’s straightforward to verify that Θ is linear: Θ(av1 + bv2) = aΘ(v1) + bΘ(v2), a, b ∈ C, v1, v2 ∈ V .

With this operator, the master equation becomes

Θet = β2et. (8)

Thus, finding the modal profile et amounts to identifying the eigenvectors of Θ whose eigenvalues equal β2.
For a lossless waveguide, energy conservation guarantees that β is real; consequently, all eigenvalues of Θ are
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real. This is reminiscent of quantum mechanics, where one needs to solve for the eigenvectors of a Hermitian
Hamiltonian operator with all eigenvalues being real. Each eigenvector is a time-harmonic solution to the
Schrodinger’s equation and represents a quantum state with well-defined energy ℏω, with ℏ the reduced
Planck’s constant and ω the corresponding eigenvalue.

Remark Since V is constructed as the span of the eigenmodes et,k (k is mode index), every vector v ∈ V is
a linear combination of eigenvectors of Θ. In linear algebra terms, Θ is diagonalizable on V .

Degree of freedom of the EM field in waveguide

A vector v(x, y) =
∑

k cket,k ∈ V represents a transverse electrical field at a given waveguide cross-section.
Each transverse modal field et,k corresponds to two full EM waves: a forward wave et,k exp(iβkz) and a
backward wave et,k exp(−iβkz). Therefore, the full transverse electrical field associated with v takes the
following form:

Et =
∑

k

et,k[ak exp(iβkz) + bk exp(−iβkz)], (9)

where ak and bk represent the amplitudes of the forward and backward waves, respectively. These amplitudes
satisfy ck = ak + bk.

This decomposition leads to uniquely defined forward- and backward-propagating fields:

E(f)
t =

∑
k

et,kck exp(iβkz),

E(b)
t =

∑
k

et,kck exp(−iβkz).

Although only the transverse components are shown, these fully determine all field components via Eqs. 9, 4,
and 1a. Hence, we have established a one-to-one correspondence between the space V of transverse fields and
the spaces of forward- or backward-propagating EM fields, denoted by V f = {E(f)

t } (or V b = {E(b)
t }). Note

that each element of V f and V b represents a full-space, not cross-section, EM field in the waveguide.

Remark The complete electromagnetic field is determined uniquely by specifying the electric field on a
cross-section. THe transverse field Et determines ak + bk, whereas the longitudinal component determines
ak − bk through (ak + bk)∇t · (ϵet) + i(ak − bk)βkϵez = 0, which follows from Eq. 4.

Power flow and inner product

The time-averaged Poynting vector of a harmonic electromagnetic field is: S = 1
2 Re(E × H∗). The power

transported along the waveguide is obtained by integrating the z-component of S over a transverse surface S:

P =
∫

S

S · ẑdA = 1
2

∫
S

Re(e × h∗) · ẑdA = 1
4

∫
S

[e × h∗ + e∗ × h] · ẑdA. (10)

This motivates the definition of an inner product between two fields in the waveguide (E1, H1) and (E2, H2):

1
4

∫
S

[E1 × H∗
2 + E∗

2 × H1] · ẑdA. (11)

The definition is physically meaning ful only wen the two fields oscillate at the same frequency; otherwise,
the time average vanishes. Below we limit our discussion to this case.

4



Conservation of energy and Lorentz reciprocity relation

For a lossless waveguide, conservation of energy requires that the net time-averaged power flowing out of any
closed surface vanish:

1
4

∮
S

[E × H∗ + E∗ × H] · n̂dA = 0.

In differential form, this condition becomes:

∇ · (E × H∗ + E∗ × H) = 0. (12)

A more general identity holds for any two allowed electromagnetic fields (E1, H1) and (E2, H2) at the same
frequency:

∇ · (E1 × H∗
2 + E∗

2 × H1) = 0, (13)

This is the celebrated Lorentz reciprocity relation. The proof of this relation is given below.

Recall the vector identity

∇ · (u × v) = v · (∇ × u) − u · (∇ × v). (14)

Using Eq. 13 and Eq. 1, we can rewrite the left side of Eq. 12 as:

∇ · (E1 × H∗
2 + E∗

2 × H1)
= H∗

2 · (∇ × E1) − E1 · (∇ × H∗
2) + H1 · (∇ × E∗

2) − E∗
2 · (∇ × H1)

= H∗
2 · (iωµ0H1) − E1 · (iϵωE∗

2) + H1 · (−iωµ0H∗
2) − E∗

2 · (−iϵωE1)
= 0.

This concludes the proof of the Lorentz reciprocity relation.

Mode orthogonality

Consider two guided modes (e1, h1) and (e2, h2) in a lossless waveguide, with propagation constants β1
and β2. If β1 ̸= β2, then these two modes are orthogonal in the sense that the inner product (defined Eq.
11) between them is zero. This property of modal fields is referred to as mode orthogonality. Below we
present a proof of the mode orthogonality.

Starting from the Lorentz reciprocity relation (Eq. 13), applied to the fields (e1eiβ1z, h1eiβ1z) and
(e2eiβ2z, h2eiβ2z), we obtain

∇ · [e1 × h∗
2 exp[i(β1 − β2)z] + e∗

2 × h1 exp[i(β1 − β2)z]] = 0.

Separating transverse and longitudinal derivatives gives
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[∇t + i(β1 − β2)ẑ] · (e1 × h∗
2 + e∗

2 × h1) = 0. (15)

Integrating Eq. 15 over the waveguide cross section S yields:

∫
S

[∇t + i(β1 − β2)ẑ] · (e1 × h∗
2 + e∗

2 × h1)dA = 0. (16)

Using the 2D divergence theorem, we obtain

∫
S

∇t · (e1 × h∗
2 + e∗

2 × h1)dA =
∮

C

(e1 × h∗
2 + e∗

2 × h1) · n̂dl. (17)

where C is a closed contour that encloses the waveguide cross section.

The contour integral in Eq. 17 vanishes for two common lossless waveguides, the dielectric waveguides and
metal-boundary waveguides. For a waveguide made of dielectric (i.e., non-conducting) materials, C should be
understood as an “infinite” contour. In this case, since the amplitudes of e1(2) and h1(2) exponentially decay
in the transverse directions outside the waveguide core (high-refractive-index region), the integral evaluates
to zero. For a metal-boundary waveguide, C is the contour of the metal boundary. Since the boundary
conditions for the modal fields dictate that the transverse components of e1(2) should be zero, the expression
in Eq. 17 again evaluates to zero.

Remark A dielectric waveguide can be viewed as a metal-boundary waveguides whose boundary lies at
infinity.

Thus, for a lossless waveguide,

∮
C

(e1 × h∗
2 + e∗

2 × h1) · n̂dl = 0. (18)

Combining Eqs. 16-18, and using the assumption β1 ̸= β2, we obtain

1
4

∫
S

(e1 × h∗
2 + e∗

2 × h1) · ẑdA = 0. (19)

This is precisely the statement that two guided modes with different propagation constants are
orthogonal.

Orthonormal basis of EM modes

If a waveguide supports two linear independent modes with the same propagation constant, the modes are
said to be degenerate. In a waveguide without degeneracy, two modes share the same β if and only if they
are scalar multiples of each other e2 = ce1, h2 = ch1, c ̸= 0.

Consider now a nondegenerate waveguide and let (ek, hk) be the mode associated with propagation constant
βk (k is the mode index). We define a normalized modal pair

e′
k = ek√

1
4 |

∫
S

(ek × h∗
k + e∗

k × hk) · ẑdA|
, h′

k = hk√
1
4 |

∫
S

(ek × h∗
k + e∗

k × hk) · ẑdA|
. (20)
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Applying this normalization to every guided mode gives a set {(e′
k, h′

k)}, which forms an orthonormal basis
for the electromagnetic fields in the waveguide. These modes satisfy the orthonormality relation

1
4

∫
S

(ep × h∗
q + e∗

q × hp) · ẑdA = 0 if βp ̸= βq; 1 if βp = βq > 0; −1 if βp = βq < 0. (21)

Here we have used the fact that β is real for any lossless waveguide.

Remark Even for waveguide with degeneracy, it is always possible - by suitable linear combinations of
degenerate modes - to construct an orthonormal set satisfying Eq. 21. The only difference is that several
orthonormal modes may correspond to the same β.

The power flow has a simple expression when working with the orthonormal basis. For an arbitrary
electromagnetic field expanded in the orthonormal modal basis,

E =
∑

k

cke′
k exp(iβkz), H =

∑
k

ckh′
k exp(iβkz),

the power carried by the field is:

P = 1
4

∫
S

(E × H∗ + E∗ × H) · ẑdA =
∑

k

|ck|2sgn(βk),

where sgn(βk) equals 1 for βk > 0 (forward mode) and -1 for βk < 0 (backward mode).

Hilbert space

As discussed previously, each element v ∈ V represents a possible transverse electric field distribution on
a waveguide cross section. Through the modal expansion, v uniquely determines a forward-propagating
full-space electromagnetic field (E, H) in the waveguide.

We therefore define the inner product between two elements v1, v2 ∈ V as the inner product of their
corresponding forward full-space fields (E1, H1) and (E2, H2):

(v1, v2) = 1
4

∫
S

(E1 × H∗
2 + E∗

2 × H1) · ẑdA. (22)

It’s straightforward to check that for all v1, v2, v3 ∈ V and all c1, c2 ∈ C, this inner product satisfies (v1, v2) =
(v2, v1)∗ (conjugate symmetry) and (c1v1 + c2v2, v3) = c1(v1, v3) + c2(v2, v3) (linearity). Additionally, when
v1 ̸= 0, (v1, v1) is the power flow of a forward EM field and must be a positive number: (v1, v1) > 0 if v1 ≠ 0
(positive-definiteness).

These three properties are precisely the axioms of an inner product on a vector space. Thus, theelectromagnetic
inner product induces an inner product on V . Moreover, V is complete: any convergent infinite sum of
forward-propagating fields corresponds to a physically realizable forward field in the waveguide. Hence, V is
a complete inner-product space, i.e., a Hilbert space.
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Hermitian operator

We now show that the operator Θ introduced earlier is Hermitian on V , meaning that

(Θv1, v2) = (v1, Θv2), (22)

for all v1, v2 ∈ V .

Express v1 and v2 in the orthonormal eigenbasis {et,k} of Θ:

v1 =
∑

k

c1,ket,k, v2 =
∑

k

c2,ket,k,

where Θet,k = β2
ket,k, and the eigenvalues β2

k are real for a lossless waveguide.

Using the orthonormality of the modes and the reality of the eigenvalues, we obtain

(Θv1, v2) =
∑

k

c1,kc∗
2,kβ2

k = (v1, Θv2).

Therefore, Θ is Hermitian on the Hilbert space V .

Power Coupling Efficiency at a Waveguide Transition

Consider two semi-infinite, parallel waveguides joined by a sharp transition. We wish to calculate the power
transfer efficiency from the first waveguide to a particular mode of the second waveguide.

Assume the field in the first waveguide contains only forward-propagating components, and neglect any
reflection from the interface. At the transition plane, the transverse fields must be continuous and can be
expanded in the modal basis of the second waveguide:

Et =
∑

i

aiet,i, Ht =
∑

i

biht,i, (23)

where Et, Ht are the transverse electric and magnetic fields at the interface in the first waveguide, and et,i

and ht,i are the transverse fields of the i-th mode of the second waveguide.

We assume that the modal fields of the second waveguide have been chosen to be real and orthonormal,
which is always possible in a lossless structure. In this case, the orthonormality relation becomes

1
2

∫
S

et,p × ht,q · ẑdA = δpq, (24)

where δpq is the Kronecker delta (δpq equals 1 if p = q and 0 if p ̸= q).

Combining Eqs. 23 and 24, we obtain the expansion coefficients

ai = 1
2

∫
S

Et × ht,i · ẑdA, bi = 1
2

∫
S

et,i × Ht · ẑdA. (25)
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The input power carried by the field in the first waveguide is

Pin = 1
2Re

∫
S

Et × H∗
t · ẑdA. (26)

The power carried by the i-th mode of the second waveguide is

Pi = 1
2Re

∫
S

aib
∗
i et,i × h∗

t,i · ẑdA = 1
2Re(aib

∗
i )

∫
S

et,i × ht,i · ẑdA = Re(aib
∗
i ), (27)

where in the last step we used the normalization in Eq. 24.

Subsituting Eq. 25 into Eq. 27 and normalizing by Pin, we arrive at

Pi

Pin
= 1

2
Re(

∫
S

Et × ht,i · ẑdA
∫

S
et,i × H∗

t,i · ẑdA)
Re

∫
S

Et × H∗
t · ẑdA

. (28)

The right-hand side of Eq. 28 is commonly referred to as the mode overlap between the input field (Et, Ht)
and the mode (et,i, ht,i) of the second waveguide. Thus, under the assumption of negligible reflection, the
power coupling efficiency into a given mode is exactly its mode overlap with the incident field.

Remark In Lumerical’s FDE solver, the computed mode profiles have real transverse components anad
satisfy the orthonormality relation used above. The “mode overlap” reported by the software corresponds
precisely to the expansion in Eq. 28.
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